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ABSTRACT OF THE DISSERTATION 

AUTOMATIC EXTRACTION OF NARRATIVE STRUCTURE 

FROM LONG FORM TEXT 

by 

Joshua Daniel Eisenberg 

Florida International University, 2018 

Miami, Florida 

Professor Mark Finlayson, Major Professor 

Automatic understanding of stories is a long-held goal of artificial intelligence and 

natural language processing research communities. Stories explain the human experience. 

Understanding stories promotes the understanding of both individuals and groups of 

people; cultures, societies, families, organizations, governments, and corporations, to name 

a few. People use stories to share information. Stories are told–by narrators–in linguistic 

bundles of words called narratives.  

My work has given computers understanding of some aspects of narrative structure. 

Specifically, where are the boundaries of a narrative in a text. This is the task of 

determining where a narrative begins and ends, a non-trivial task, because people rarely 

tell one story at a time. People don’t specifically announce when we are starting or stopping 

our stories: We interrupt each other. We tell stories within stories. Before my work, 

computers had no awareness of narrative boundaries, essentially where stories begin and 

end. My programs can extract narrative boundaries from novels and short stories with an 

F1 of 0.65.  
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Before this I worked on teaching computers to identify which paragraphs of text 

have story content, with an F1 of 0.75 (which is state of the art). Additionally, I have taught 

computers to identify the narrative point of view (POV; how the narrator refers to theirself) 

and diegesis (how is the narrator involved in the story’s action) with F1 of over 0.90 for 

both narrative characteristics. For the narrative POV, diegesis, and narrative level 

extractors I ran annotation studies, with high agreement, that allowed me to teach 

computational models to identify structural elements of narrative through supervised 

machine learning.  

My work has given computers the ability to find where stories begin and end in raw 

text. This will allow for further, automatic analysis, like extraction of plot, intent, event 

causality, and event coreference. These are difficult when there are multiple narratives in 

one text. There are two key contributions in my work: 1) my identification of features that 

accurately extract information about narrators, and narrative levels and 2) the gold-standard 

data generated from running annotation studies on identifying these same elements of 

narrative structure.  
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Chapter 1 

Motivation 

 

 

Stories explain the human experience. Understanding our stories promotes the 

understanding of both individuals and groups of people; cultures, societies, families, 

organizations, governments, and corporations, to name a few. People use stories to share 

information.  

Stories are told–by narrators–in linguistic bundles of words called narratives. My 

work enables computers to have an awareness of the structural elements of narrative. In 

particular, computers can automatically determine where the boundaries of a narrative in a 

text are. This is the task of determining where a narrative begins and ends, a non-trivial 

task, because people often narrate multiple stories at a time. We don’t specifically 

announce when we are starting or stopping our stories. We interrupt each other. We tell 

stories within stories. Before my work, we had no ability to automatically detect where 

stories begin and end in long texts (specifically texts between 350 and 1,000 sentences long 

or 7,000 to 20,000 words), which I will discuss further in this dissertation.   

My programs can automatically extract structural information about narrative, and 

this gives information about how a story is told. Extraction of finer grained information, 

like plot, character roles, and event relationships, cannot be accurately extracted without 

knowing which spans of text contain the telling of which stories. Imagine trying to figure 

out the plot of a chapter from a novel, but there are two distinct narratives. Typically, there 

is an original narrative, which tells a story about a group of characters, and then one of the 
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characters, possibly the protagonist, will tell a story about the past. Here are two distinct 

narratives, the original one, and the narrative embedded in the character’s speech. Note that 

not all speech is considered narrative, so this task is more complex than just finding quoted 

text.  

A classic example of this can be found in the novel “Heart of Darkness” by Joseph 

Conrad (2016). There are two main narratives in “Heart of Darkness”: the original narrative 

begins with five men sitting on a boat, and one of these men, Marlow, is telling a story 

about his past. The second narrative, occurs in the speech of Marlow, which tells a story of 

his journey on the Congo River. The real action in “Heart of Darkness” occurs in the 

embedded narrative told by Marlow; his monologue to the other passengers of the boat. 

There is little action in the original narrative other than Marlow speaking, which provides 

a good example of an embedded narrative to annotate and examine. 

What does the plot of “Heart of Darkness” look like? There are two distinct plots: 

first, a brief plot describing how Marlow tells his story to his four shipmates, and second, 

the plot of Marlow’s past, going to Africa, managing a trading post, and going through the 

Congo to search for Mr. Kurtz (the mysterious antagonist). The embedded narrative is rich 

with events. How would a computer be able to extract these two plots, if it treats all text 

the same way, and assumes that there is only one narrative?  

My work gives computers the ability to detect where narrative boundaries are, and 

how long are the spans of each narrative level. Using my narrative level extractor, 

computers can be aware of which spans of text belong to different narrative levels, and 

these different levels should each be treated as their own distinct narratives. In order to 

understand the narrative, the computer needs to extract plot, and it must extract plot from 
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each narrative level. If the computer only tried to extract one plot from the entirety of 

“Heart of Darkness” then it would be convoluted, with events from different stories all 

smushed into the same plot. It is essential to distinguish different narrative levels, and treat 

them as unique narratives with their own plots, characters, and narrators.  

Story understanding is an almost automatic awareness for people. According to 

cognitive psychologist Jerome Bruner (2003, pp. 8-9), “The telling of a story and its 

comprehension as a story depend on the human capacity to process knowledge in this 

interpretive way. …[T]here is compelling evidence to indicate that narrative 

comprehension is among the earliest powers of the mind to appear in the young child and 

among the most widely used forms of organizing human experience.” My work is the first 

to teach computers the awareness of narrative point of view and diegesis, as well as 

extraction of narrative levels. My research has also advanced the ability of story 

classification, from F1 of 0.65 to 0.75, using many orders of magnitude less features, and 

is thousands of times more generalizable. 

People can automatically process stories, but computers must be programmed to 

have these skills. My work teaches computers the ability to process structural information 

from stories, what is the POV, what is the diegesis, is a story being told, and where are the 

boundaries between narratives. Further work can be done to determine basic components 

of story understanding, such as what is the plot of the stories that are told in each narrative, 

who are characters, do events in the story of one narrative get mentioned in the telling of 

another narrative. At the time of writing this dissertation, computers have rudimentary 

ability to solve these tasks. Further, an important aspect to each of these tasks, is being able 

to distinguish which spans of text belong to which narrative. These answers depend on 
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where narrative levels occur, so automatic extraction of narrative levels is necessary for 

accurate extraction of plot, characters, and event-coreference for multi-narrative texts. 

But why do computers need to understand stories? One reason is that stories will 

enable computers to understand people. If computers can understand the structure of 

stories, they can extract the information bundled into the story narrated by the person 

interacting with the computer. This information can be used to understand people based on 

their story, be it their history, their cultural narratives, or the narratives of the societal 

groups they belong. People use this information to understand other people, and computers 

should be aware of the people’s narrative when they are interacting with us.  

Second, story understanding can be used by computers to make models of what is 

happening in the real world in real time. Every day, new articles are published reporting 

on current events. People discuss these events on social media platforms like Twitter and 

Facebook. If computers could extract plots from the stories that are contained in news 

articles, then they could automatically make models of what is happening in the real world. 

It is important to know how people report and react to current events. If computers could 

find references to the events mentioned in the news, to the discourse posted on social media 

and the internet, they could obtain a sample of people’s opinions on current issues.  

My work will enable this type of story understanding because my work will allow 

the computer to find story content, specify which spans of text contain which narratives, 

and classify characteristics of the narrator.  The applications for a system like this are 

endless. An obvious, and profitable, application of computational story understanding, is 

to automatically process the news, and social media, in real time, as a feature for making 

investment decisions. For example, if an article about Amazon’s poor treatment of part-
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time workers is published, it might affect the behavior of the stock. Knowledge of how 

people react to this article is useful in considering how to interpret this news and its impact. 

Computational understanding of stories will allow computers to automatically extract this 

information, incorporate it into its understanding of the world, and use this knowledge to 

make more educated decisions.  

If understanding people, cultural narrative, and enabling computers to make 

informed decisions aren’t compelling reasons to research the computational understanding 

of stories, then consider the following: computational understanding of narrative could be 

used to automatically identify the spread of fake news. My programs can be used to figure 

out where stories begin and end in text. Once we know these spans, plot can be extracted, 

and the truth of these events, and relationships of events can be evaluated for facts. Without 

extraction of narrative levels, plot and event extraction would be carried out on too broad 

a scope. 

 

 

1.1 Outline 

The dissertation is organized as follows: Chapter 2 elucidates the elements of basic 

narratology, and narrative boundary theory. I define essential terms, including story, 

narrative, and narrative boundary. I will discuss plot and characters. I use examples from 

short stories, novels, and TV scripts to illustrate the usage of some common and not so 

common arrangements of embedded and interruptive narratives. In Chapter 3 I discuss the 

annotation study that I ran on the extraction of narrative boundaries in long form texts. I 

hired and trained two domain experts in narrative so that they could annotate the narrative 
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boundaries in a corpus of 287,777 words, spread across 26 unique English texts: excerpts 

from novels by a diverse set of authors, short stories by Haruki Murakami, American court 

transcripts, and TV show screenplays. Chapter 4 contains the most significant result of this 

dissertation. Narrative boundaries can be accurately extracted from natural texts when 

computers use three key features: the narrative point of view, the usage of stories, and 

occurrence of main characters. These features allow an SVM model to achieve F1 of 0.62 

for detecting embedded narratives. Chapter 5 discusses the task of story classification in 

paragraphs of texts. I built a state of the art classifier, that is more accurate, generalizable, 

and computationally efficient with respect to the work of other researchers. The research 

in Chapter 6 is on the annotation of narrative diegesis and point of view from novels and 

news articles, and demonstrates the accurate computational extraction of these 

characteristics from natural texts. Chapter 7 is an exploration of the computational work 

that other researchers have conducted relating to the computational understanding of 

narrative. In Chapter 8 I conclude with summarizing my contributions and discussing 

future work and applications.   

 

 

1.2 Dissertation contributions 

There are two key sets of contributions in my dissertation:  

 

1) The choice of which features are useful for automatically classifying different 

aspects of narrative. In chapter 4 I empirically show which features are best for 

extracting narrative levels from raw text. In chapter 5 I show which features are 
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best for detecting which paragraphs of text have story content. In chapter 6 I 

show which features are best for classifying the narrative point of view and 

diegesis of novels. Although engineering programs to extract these features, is 

a non-trivial task, knowing which features to use for classifying a narrative 

phenomenon is a much harder task. The feature engineering is the most 

important kernel of knowledge produced by my dissertation research. Going 

forward, any programmer, looking to teach their computers computational 

understanding of narrative, can use my findings to guide their implementations.  

2) The secondary contributions are the gold-standard annotations produced from 

the annotation studies I ran, and the annotation guides that I wrote and used to 

run the annotation studies. It would be impossible to train and evaluate the 

machine learning models that classify elements of narrative structure without 

the annotated data produced in my annotation studies. It would also be 

impossible to determine which features can accurately classify the elements of 

narrative structure without these annotations. I include the annotation guides in 

this category of contribution, because these guides will help other people run 

their own annotation studies.  

 

There is one final contribution that is worth mentioning: the Java (Gosling, 2014) programs 

that extract features, train SVM (Chang, 2011) classification models, and evaluate the 

performance of these models. The POV and diegesis extractors have already been open 



 8 

sourced and are available online1. The remainder of these programs can be shared by 

request2. The code is a secondary contribution; the features for how the computer should 

classify different aspects of narrative structure is key. Now anyone can use insights gained 

from my experiments on different sets of features to design more accurate and advanced 

systems that extract narrative structure.  

In addition to the code being open sourced, I have been granted a patent for the 

“Features for the Automatic Classification of Narrative Point of View and Diegesis” (U.S. 

Patent No. 15/804,589), and I have a patent pending for the “Features for Classification of 

Stories” (U.S. Patent Application No. 62/728,380). Hence, the main contribution of my 

work is the features used to classify narrative structure, and the relationship of these 

features to the realities of narrative. I did not patent my programs, or my algorithms. Instead 

I patented the features that the computer needs to make correct decisions.  

 

 

 

 

 

 

 

 

                                                
1 https://dspace.mit.edu/handle/1721.1/105279 
 
2 jeise003@fiu.edu 
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Chapter 2 

Narrative theory 

 

 

This chapter is a review of narratology, and the concepts that are essential for my research. 

A clear understanding of these narrative concepts is necessary for our discussions on 

extracting structural elements of narrative from text. I will first define the concepts of 

narrative, narrators, and story. Next, I will define two characteristics of narrators: point of 

view and diegesis. Then I discuss plot and characters. Finally, I will have a thorough 

discussion about narrative boundaries and levels, and explain how they can appear in real 

texts. 

A by-product of explicitly defining and discussing the mechanics of these 

characteristics, is the ability to analyze which features of linguistics and semantics 

characterize them. This enabled me to make accurate decisions when doing my own 

annotations and when adjudicating annotations. My involvement in annotation POV, 

diegesis, and narrative boundaries enabled me to explain how I could decide the values for 

these characteristics. This was invaluable experience when it came time to decide which 

features to use for generating computational models.  

The information in this chapter has been adapted from the annotation guides I wrote 

for my annotation studies on narrative boundaries, POV, and diegesis. I compiled this 

information to train my annotators. At a minimum, I wanted them to be aware of the 

narratological concepts that explain the phenomena they would be annotating. Ideally, I 

planned for my annotators to combine their natural ability to understand stories, with the 
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theoretical frameworks that are defined in the annotation guides, to help them think 

critically, and if possible quantitatively, about how they made their decisions about 

narrative structure.  

 

 

2.1 Narrative, narrators and stories 

A narrative is a discourse presenting a coherent sequence of events which causally and 

purposely relate, concerns specific characters and times, and overall displays a level of 

organization beyond the commonsense coherence of the events themselves, such as that 

provided by a climax or other plot structure.  

Narrative is a linguistic representation of a story. A story is a series of events 

affected by animate actors or characters. A story is an abstract construct, with two essential 

elements: plot (fabula) (Bal, 2009, p. 5) and characters (dramatis personae) (Propp, 1968, 

p. 20). The art of storytelling is much more complicated than merely listing events carried 

out by characters. There is great importance in the storyteller’s choice of which details are 

revealed to the reader, the order in which plot events are told, whether to embed stories 

within each other, and whether to interrupt the telling of one story to make space for a new 

one. Even the choice of what details (character traits, setting, history) the author reveals to 

the reader is important.  

Narrative is more concrete than story, in that narrative is made up of words, but a 

story is formed through the co-occurrence of characters who enact events which advance a 

plot forward. Narratives occupy spans of text, while stories are a more complex relationship 

involving characters and events. Throughout this dissertation, I will say the narrative is the 
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span of text that expresses the story, or simply narrative text. Note, narratives can also be 

delivered in the form of images, movies, and songs. In my dissertation, I focus on text 

narratives, but I do some work on automatic understand of TV show scripts, which is 

discussed in chapters 3 and 4.  

Narrators tell narratives. “A narrative is narrated by a narrator to a narratee…” 

(Nelles, 1997, p. 9). A narrator is not the same as an author. In narratology, there is a 

framework of historical authors and readers, and implied authors and readers (Bal, 2009, 

p. 16). The historical author writes the narrative, while the historical reader either reads or 

hears the narrative. An implied author is closer to the concept of narrator: the implied 

author is the entity, with respect to the frame of the narrative, that is narrating, or telling 

the story. The implied author only exists within the text. The implied reader is the entity 

that the text is being read or written to. “The historical author writes, the history reader 

reads; the implied author means, the implied reader interprets; the narrator speaks, the 

narrate hears.” (Nelles, 1997, p. 9). 

Narrative diegesis is whether the narrator is involved or not involved in the story’s 

action, heterodiegetic or homodiegetic, respectively. In a homodiegetic narrative, the 

narrator is not just a narrator, but a character as well, performing actions that drive the plot 

forward. In a heterodiegetic narrative, the narrator is observing the action but not 

influencing its course. 

Narrators can tell stories in different ways and there are different types of narrators; 

different characteristics in which the narrator tells a story. The point of view (POV) of a 

narrator is whether the narrator describes events in a personal or impersonal manner. There 

are, in theory, three possible points of view, corresponding to grammatical person: first, 
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second, and third person. First person point of view involves a narrator referring to 

themself, and implies a direct, personal observation of events. By contrast, in a third person 

narrative the narrator is outside the story’s course of action, looking in. The narrator tells 

the reader what happens to the characters of the story without ever referring to the 

narrator’s own thoughts or feelings. 

 

 

2.2 Narrative levels in literature 

Narratives can be arranged in many interesting ways: a narrative can appear contiguously 

as one solid span of text, or it might be embedded in another narrative, or it might even 

interrupt the preceding narrative. There are infinite ways to arrange embedded and 

interruptive narratives. An embedded narrative can be interrupted. An interrupted narrative 

can have embedded narratives within it. Embedded and interruptive levels can be used by 

storytellers in any arrangement of their choice. Many novels and short stories contain 

multiple instances of embedded and interruptive narratives, often with intricate 

combinations of the two phenomena. This is also true of scripts of TV shows, movies and 

the transcripts of court cases.  

Every narrative has at least two narrative boundaries: the start point—which I 

define here as the position in text of the first character of the first word in the narration—

and the end point—which I define as the position of the last character after the last word 

in the narration. The simplest kind of narrative is an uninterrupted one. The start point of 

such a narration is the first character of the text, and the end point is the last character of 

the text. This text’s narrative has only two boundaries.  
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I woke up early in the morning, checked the weather app on my phone and decided it 

would be a perfect day to go to the beach. I grabbed a book, a towel, and sunglasses, got 

in my car, and drove to the beach. I read my book, watched the waves, and went for a 

quick swim. I dried off and drove home. It was a great day, even though I forgot to bring 

sun screen and got a sunburn.  

Example 2.1: A simple example of uninterrupted narrative 

 
Example 2.1 shows an uninterrupted narrative by a first-person narrator who tells the story 

of their trip to the beach. The narrator uses the first-person point of view to narrate. There 

are no shifts in time, and no interrupted narratives. The next two sections define embedded 

(§ 2.2.1) and interruptive (§ 2.2.2) narratives. 

 

 

2.2.1 Embedded narratives 

Narratives can be embedded in one another. An embedded narrative tells a story within a 

story. Before I discuss how embedded narratives occur in text, let’s define how I refer to 

the relationship between the layers. The original narrative is the narrative where the 

embedded narrative is told, and the original narrative contains an event (explicit or implied) 

that signals the telling of an embedded narrative. The embedded narrative is the narrative 

that is embedded within the original narrative.  

Figure 2.1 contains a narrative level diagram for a text that contains an embedded 

narrative. The lower bar represents the span of text that the original narrative appears in, 
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while the upper bar represents the spans of the embedded narrative. The horizontal axis 

represents the text under consideration. Progressing from left to right, the graph represents 

the position in the text advancing from the first word to the last. The horizontal axis can 

sometimes represent the progression of time, but time is not always linear in a narrative; 

there can be flashforwards, flashbacks, and other anachronisms.  

 

 

Figure 2.1 Narrative level diagram for an embedded narrative. 
 
 
An embedded narrative occurs when a plot event in the original narrative triggers the telling 

of another story in the story. The narrative that tells the second story is the embedded 

narrative. A common example of embedded narrative is a conversation that occurs in the 

original narrative. Within the dialogue, one (or both) of the participants narrates a story. 

The plot event in the original narrative that signals the embedded narrative is a character’s 

narration of a story via speech. This speaking is an event occurring on the original level. 

The events in the character spoken narrative belong to the plot of the story from the 

embedded narrative.  

Recall Example 2.1, a story about a day at the beach. Example 2.2, is an altered 

version of Example 2.1, with the insertion of an embedded narrative. The span of text that 

Original
Narrative

Embedded 
Narrative

Position in Text
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contains the embedded narrative is highlighted in green. The narrative boundaries in 

Example 2.2 are graphically represented in the narrative boundaries diagram in Figure 2.1.  

 

I woke up early in the morning, checked my weather app on my phone and decided it 

would be a perfect day to go to the beach. I grabbed a book, a towel, and sunglasses, got 

in my car, and drove to the beach. I read my book, watched the waves, and went for a 

quick swim. As I emerged from the water a disheveled looking pirate washed ashore, 

“Aye Aye! I have just been washed ashore. I was the captain of the Shivering Sparrow, 

but there was a mutiny onboard. All of my crew including my parrot turned on me, and 

made me walk the plank. I clung onto a piece of driftwood for three days, and now I am 

here. Where am I?” I didn’t believe the pirate’s story, so I ignored him and walked away. 

I dried off and drove home. It was a great day, even though I forgot to bring sunscreen 

and got a sunburn.  

Example 2.2: Simple example of an embedded narrative 

 
Example 2.2 contains a basic example of an embedded narrative. The story is almost the 

same as Example 2.1’s, except when the original narrator gets out of the water, they 

encounter a pirate, who tells their story about being abandoned at sea, clinging to a piece 

of wood, and washing ashore. The pirate’s embedded narrative is highlighted in green, and 

is embedded in the narrative of the original narrator. The original narrative ends the same 

way in Example 2.1. 

In Example 2.2’s original narrative, the original narrator witnesses the pirate telling 

a story. The pirate’s narration is a plot event in the lower level. This plot event in the 
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original narrative triggers the start of the embedded narrative. The plot events of the pirate’s 

story are part of the embedded story, since they are told in the pirate’s embedded narrative. 

The embedded narrative contains a story with events that are separate from the events in 

the story from the original narrative. It is also possible for the original narrator to tell an 

embedded narrative in the narrative text3. This type of narrative can occur via embedded 

flashbacks, which will be discussed in §2.2.3.  

Example 2.3 is an excerpt from a novel. This excerpt contains an embedded 

narrative, highlighted in green. In the original narrative, Tsukuru Tazaki and Sara are on a 

date at a bar, and Tsukuru is telling Sara a story about his past. The highlighted text is part 

of the embedded narrative, since it contains Tsukuru narrating a story about his previous 

rejection. 

This is a narration about Tsukuru Tazaki’s past; He is explaining how he felt, and 

why he acted a certain way. Only the highlighted text is part of the embedded narrative. 

The final paragraph is not part of the embedded narrative because it is not a telling of the 

embedded story. It is part of the original narrative, where Sara is trying to verbalize her 

empathy for Tsukuru by asking him a clarifying question. 

 

 

 

 

 

                                                
3 Here narrative text means the text the narrator uses to narrate to the reader. Narrative 
text does not include text in quotes or direct speech.  
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Her mojito glass was empty. She signaled the bartender and asked for a wine list, and, 

after some deliberation, she chose a glass of Napa Cabernet Sauvignon. Tsukuru had 

only drunk half his highball. The ice had melted, forming droplets on the outside of his 

glass. The paper coaster was wet and swollen. 

“That was the first time in my life that anyone had rejected me so completely,” Tsukuru 

said. “And the ones who did it were the people I trusted the most, my four best friends 

in the world. I was so close to them that they had been like an extension of my own body. 

Searching for the reason, or correcting a misunderstanding, was beyond me. I was 

simply, and utterly, in shock. So much so that I thought I might never recover. It felt like 

something inside me had snapped.” 

The bartender brought over the glass of wine and replenished the bowl of nuts. Once 

he’d left, Sara turned to Tsukuru. 

“I’ve never experienced that myself, but I think I can imagine how stunned you must 

have been. I understand that you couldn’t recover from it quickly. But still, after time 

had passed and the shock had worn off, wasn’t there something you could have done? I 

mean, it was so unfair. Why didn’t you challenge it? I don’t see how you could stand it.” 

Example 2.3 Example of an embedded narrative from a novel (Murakami 2014, p.41). 

 

It is important to note that the phrase “Tsukuru said” in the second paragraph is not part of 

the embedded narrative because it is an action that occurs in the original narrative. Tsukuru 

is having his conversation within the frame of the original narrative while he is on a date 

with Sara. 
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Before I move to interruptive narratives, let’s talk about a canonical example of an 

embedded narrative: Joseph Conrad’s “Heart of Darkness” (Conrad, 2016). In this novel, 

there is a homodiegetic narrator on a boat, listening to a story told by his shipmate Marlow. 

Marlow’s story, which is told in dialogue, is the main story of the novel. The original 

narrator’s story is quite simple, he is just a passenger on a boat listening to Marlow. The 

story with action, and a compelling plot, is the embedded story that Marlow is telling the 

original narrator, about Marlow’s experiences in Africa, searching for Mr. Kurtz on the 

Congo.  

 

 

2.2.2 Interruptive narratives 

Narratives that interrupt the original narrator’s narration are called interruptive 

narratives, which are different from embedded narratives. An example is a book where 

each chapter has a different narrator. Namely, for the majority of the novel 1Q84 

(Murakami, 2011), all the odd numbered chapters are narrated from the perspective of the 

heroine, Aomame, and the even numbered chapters are narrated from the perspective of 

the hero, Tengo. The boundaries at the end of each chapter in this novel mark interruptive 

narrative boundaries. For example, at the end of an odd numbered chapter, the narrator 

switches from the perspective of Aomame to Tengo, and at the end of each even numbered 

chapter, the narrator switches from the perspective of Aomame to Tengo.  

Interruptive narratives can occur within chapters, or, for our purposes, within short 

stories, chapters of novels, or in the dialogue of a script. Sometimes the person narrating 

will change; at other times, the original narrator is a first-person narrator, and then the 
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narrator will suddenly shift to a third person impersonal narrator, or vice versa. If the 

narrator changes, there is usually an interruptive narrative boundary. 

 

 

Figure 2.2 Narrative boundary diagram for “1Q84”. 

 
Sometimes there will be a section break which indicates the change of narrator. Section 

breaks are visual markers that separate text. Sometimes a section break is signaled by a 

series of special characters, like an asterisk (*) or a horizontal rule (a thin, horizontal line). 

Sometimes there will just be many blank lines in a section break. Note that the presence of 

a section break does not guarantee the presence of an interrupted narrative. For example, 

there can be a section break, and immediately after the break the narration is continued by 

the same narrator, from the same point in time that the narrative before the section break 

left off. 

The difference between interruptive and embedded narratives may seem subtle, but 

there is a difference. In an embedded narrative, a plot event occurs in the story of the 

original narrative, which triggers the telling of an embedded narrative. An interruptive 

narrative is triggered by the original narrative stopping. The trigger of an interruptive 

narrative is not a plot event in the original narrative, instead there is a meta-event, where 

something structural, where how story is being told, changes. Once the original narrative 

Aomame's 
Perspective

Tengo's 
Perspective ...

Position in Text
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has stopped, the interrupting narrative begins to be told. Even though the entity narrating 

the story can change, or the narrator remains consistent, the time in which the story is told 

changes. If you are questioning whether a narrative is interruptive, you should ask yourself: 

Is the telling of the span in question a plot event in the original narrative? If it is, then the 

span in question is embedded. If not, then it is interruptive.  

 

I woke up early in the morning, checked my weather app on my phone and decided it 

would be a perfect day to go to the beach. I grabbed a book, a towel, and sunglasses, got 

in my car, and drove to the beach. I read my book, watched the waves, and went for a 

quick swim. As I emerged from the water a disheveled looking pirate washed ashore. 

      *  *  * 

 I have just been washed ashore. I was the captain of the Shivering Sparrow, but there 

was a mutiny onboard. All of my crew including my parrot turned on me, and made me 

walk the plank. I clung onto a piece of driftwood for three days, and now I am here. 

      *  *  * 

The pirate looked like he just went through a tragic ordeal, but he was a pirate, so I 

decided it was best to ignore him. I dried off and drove home. It was a great day, even 

though I forgot to bring sun screen and got a sunburn.  

 

Example 2.4: Example of an interruptive narrative 

 

Let’s consider an example of a story with an interruptive narrative. Above is Example 2.4. 

It is again an altered version of Examples 2.1 and 2.2. The story is like Example 2.2, in that 
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the narrator goes to the beach, reads, goes for a swim, and encounters a pirate upon exiting 

the water. After the original narrator observes the pirate washing ashore, there is a section 

break signaled by three asterisks. Highlighted in yellow is the interruptive narrative of the 

pirate, told in first person. The pirate telling this story is not an event in the original 

narrative, which is what happened in the embedded narrative of Example 2.2. There is no 

event, in the original narrative of Example 2.4, where the pirate tells a story. Instead, there 

is an interruption of the original narrative, the pirate tells his story, and then the original 

narrator begins telling his story. Figure 2.3 contains a narrative boundary diagram for this 

generic interruptive narrative.  

 

 

Figure 2.3: Narrative level diagram for an interruptive narrative 

 

A useful set of questions to ask when looking for interruptive narratives include: who is 

the narrator? Who is the narratee? And, does this change over the course of the text? In an 

interrupted narrative, there is usually a change to either who the implied narrator is or the 

narratee, or both. 

Now let’s ask these questions about Example 2.4. The original narrative is narrated 

by the unnamed character who spends their day at the beach. The interruptive narrative is 
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told by a new narrator: the pirate. It is unclear whether the narratee changes in these two 

narratives. The interruptive narrative could just be the pirate narrating his stream of 

consciousness to himself. There is not enough information to definitively say who the 

narratees are and whether they change. What is certain, is that the narrator changes during 

this interruptive narrator, and this is just another indication that the pirate’s story is told in 

an interrupted narrative.  
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“You can hide memories, but you can’t erase the history that produced them.” Sara 

looked directly into his eyes. “If nothing else, you need to remember that. You can’t 

erase history, or change it. It would be like destroying yourself.” 

 “Why are we talking about this?” Tsukuru said, half to himself, trying to sound upbeat. 

“I’ve never talked to anybody about this before, and never planned to.” 

Sara smiled faintly. “Maybe you needed to talk with somebody. More than you ever 

imagined.” 

                                                                • • • 

That summer, after he returned to Tokyo from Nagoya, Tsukuru was transfixed by the 

odd sensation that, physically, he was being completely transformed. Colors he’d once 

seen appeared completely different, as if they’d been covered by a special filter. He heard 

sounds that he’d never heard before, and couldn’t make out other noises that had always 

been familiar. When he moved, he felt clumsy and awkward, as if gravity were shifting 

around him. 

For the five months after he returned to Tokyo, Tsukuru lived at death’s door. He set up 

a tiny place to dwell, all by himself, on the rim of a dark abyss. A perilous spot, teetering 

on the edge, where, if he rolled over in his sleep, he might plunge into the depth of the 

void. Yet he wasn’t afraid. All he thought about was how easy it would be to fall in. 

Example 2.5: Example of an interruptive narrative from a novel (Murakami 2014, p. 
45). 

 

Next, let’s will consider another excerpt from Murakami (2014). Example 2.5 contains two 

narratives, highlighted in red and yellow. The first narrative, highlighted in red, is a 

continuation of the original narrative from Example 2.3, when Tsukuru is on a date with 
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Sara. The first narrative is interrupted by a third person narrator, who tells a story about 

Tsukuru’s adolescence. There is a narrative break punctuating the two narratives. The 

narrative highlighted in yellow is an instance of an interruptive flashback, which is 

discussed in the next section. 

 
 

2.2.3 Time shifts: flashbacks and flashforwards 

There are two types of time shifts in story telling: flashbacks, (also known as analepsis), 

and flashforwards (also known as prolepsis). Both flashbacks and flashforwards are 

recurrent in storytelling. A flashback occurs when the time of the events told in the 

narration shift from the present to a time in the past. Flashbacks might occur when the 

narrator remembers something that happened in the past. A flashforward is similar, except 

the events are from the future. Flashforwards can come in the form of visions or prophecies. 

Other times, flashforwards foreshadow or reveal key events that will occur, even though 

the narrator might not know that these events will occur. Both flashbacks and flashforwards 

are popular storytelling devices in both literature and film. There are two ways flashbacks 

can be narrated: 

Embedded flashbacks are embedded in the original narrative. In the original 

narrative, the narrator is narrating a story about the present, and then the narrator will shift 

the subject of their narration to telling a story about events that happened in the past. 

Sometimes the retelling of past events will use verbs in the past tense. The narrator is telling 

a story about the past from the present time, in which the events of the original narrative 

are unfolding. This is similar to the case where an embedded narrative is told in dialogue 
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(see Example 2.2), except in flashbacks the embedded narrative is told in the narrative text; 

the audience of the flashback is the reader, not another character in the story.  

Interruptive flashbacks interrupt or replace the original narrative. The original 

narrative ends, and a new narrative of events occurring at a time before the original 

narrative begins. The key characteristic of the interruptive flashback, is that the narrator 

also shifts in time. The narrator of the original narrative and the flashback do not have to 

be the same narrator. Sometimes the person who is narrating the flashback will be a 

different character than the narrator of the original narrative. Sometimes the point of view 

of the flashback’s narrator will be different than that of the original narrator. Other times, 

the narrator of the flashback is identical to the original narrator, the only difference being 

the events in the flashback happened at a time before the original narrative. Interruptive 

flashbacks break the telling of the original narrative: they are not embedded in any other 

narrative.  

 Remember that the excerpt in Example 2.5 contains an interruptive flashback. The 

original narrative is interrupted by a new narrative, which takes place at a time before the 

original narrative. The narrator seems to be the same third person heterodiegetic narrator, 

but they are telling events from a story happened in a time prior to the events in the original 

narration. 

Flashforwards can also either be embedded or interruptive. Flashforwards tend to 

be interruptive though, since narrators typically do not know what will happen in the future, 

so the original narrative must be interrupted, to provide an account of events from a future 

time. Flashbacks can be embedded into speech, but this is usually either a telling of a vision, 

or it can be the telling of a hypothetical future.  
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Flashbacks and flashforwards have elements of narrative structure that a simple 

mentioning of events from a different time lack. A time shift should have its own plot, 

characters, and story.   Flashbacks and flashforwards are stories and not just details from 

an event that happened in the past or future.  

 

 

2.2.4 Dreams and visions 

Many stories contain dreams. There are two types of dreams, and they are similar to the 

two types of flashbacks. Dreams are either embedded into the original narrative, or they 

interrupt it. Embedded dreams occur when the narrator is narrating the memory of their 

experience of a past dream. Interruptive dreams occur when the narration is occurring from 

within the dream: the narrator is narrating as the dream unfolds.  

Visions are similar to dreams. A vision, like a prophecy, could be a telling of the 

future. The events of the prophetic vision may or may not come true, but the actual telling 

of the vision is distinct from the original narrative. Other types of visions can be sudden 

recollections of images or events from the past. Like dreams, visions and prophecies can 

be either embedded in the original narrative, or interruptive of the original narrative.  

The excerpt in Example 2.6 is also from “Colorless Tsukuru Tazaki…”(Murakami 

2014). The original narrative is highlighted in green. This narrative is about Tsukuru 

talking to his friend Haida about classical music. Talking about classical music causes 

Tsukuru to have a vision, or a daydream, from his past. In Tsukuru’s vision, which is 

highlighted in green, he sees his old friend Shiro masterfully playing the piano in a very 

dreamy and vivid setting.  
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Haida got quite talkative when it came to music. He went on, delineating the special 

characteristics of Berman’s performance of Liszt, but Tsukuru barely listened. Instead, 

a picture of Shiro performing the piece, a mental image, vivid and three-dimensional, 

welled up in his mind. As if those beautiful moments were steadily swimming back, 

through a waterway, against the legitimate pressure of time. 

The Yamaha grand piano in the living room of her house. Reflecting Shiro’s 

conscientiousness, it was always perfectly tuned. The lustrous exterior without a single 

smudge or fingerprint to mar its luster. The afternoon light filtering in through the 

window. Shadows cast in the garden by the cypress trees. The lace curtain wavering in 

the breeze. Teacups on the table. Her black hair, neatly tied back, her expression intent 

as she gazed at the score. Her ten long, lovely fingers on the keyboard. Her legs, as they 

precisely depressed the pedals, possessed a hidden strength that seemed unimaginable in 

other situations. Her calves were like glazed porcelain, white and smooth. Whenever she 

was asked to play something, this piece was the one she most often chose. “Le mal du 

pays.” The groundless sadness called forth in a person’s heart by a pastoral landscape. 

Homesickness. Melancholy. 

As he lightly shut his eyes and gave himself up to the music, Tsukuru felt his chest 

tighten with a disconsolate, stifling feeling, as if, before he’d realized it, he’d swallowed 

a hard lump of cloud. The piece ended and went on to the next track, but he said nothing, 

simply allowing those scenes to wash over him. Haida shot him an occasional glance.” 

Example 2.6: Example of an interruptive vision in a novel (Murakami 2014, pp. 70–

71). 
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This vision interrupts the story told in the original narrative. The vision is not embedded 

because there is no action in the original narrative that triggers the telling of the vision. The 

last two sentences of the first paragraph inform the reader that Tsukuru is about to have a 

vision. These preparatory sentences are not part of the vision, since they describe events 

that are happening in the original narrative level: a “picture of Shiro…welled up in 

[Tsukuru’s] mind.” The actual vision is a departure from the original narrative. It describes 

what Tsukuru sees and feels when he is watching Shiro at the piano. This is not something 

that is happening at the time of the original narrative, it is something that Tsukuru is 

experiencing. The vision ends when the original third person narrator begins narrating 

about events that are actually happening in the present, “As he lightly shut his eyes and 

gave himself up to the music, Tsukuru felt his chest tighten with a disconsolate, stifling 

feeling…”. The music then continues to play, and Haida shoots Tsukuru “…an occasional 

glance.” These are events happening within the boundaries of the original narrative, and 

they signal the switch back to the original narrative from the interruptive vision. 

 

 

2.3 Narrative levels in scripts 

In addition to short stories and novels, I am interested in annotating the narrative 

boundaries in scripts. Specifically, this dissertation will focus on the scripts of TV shows, 

and the transcripts of court proceedings. There are two types of text in a script: dialogue 

and action. Dialogue contains the words that actors (or people) speak, and the action gives 

direction for what the actors do, how they do it, and what happens in the world that the 
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script describes. Scripts can either be used to tell actors what to say and how they should 

act, which dictates how they should behave during a performance, or scripts can be a 

recording of things that happened in real life, like a transcription of the dialogue in a court 

case. 

 

 

2.3.1 Dialogue 

In the context of scripts, dialogue is a type of structured text. There are two components of 

dialogue: the character’s name and the character’s speech. In a script, the character’s 

name will be stated. Typically, it will be bolded. Following the character’s name are the 

words that the character will speak. The character’s speech will not be in bold. Look at 

Example 2.7, which is an excerpt from the script of “Star Trek: Deep Space 9 – The Visitor” 

(Taylor 1995). This excerpt portrays a conversation between two characters, Old Jake and 

Melanie. They are having a conversation about Old Jake’s writings and how Melanie 

enjoys his writing. In this excerpt, there are four utterances in the dialogue. Old Jake speaks 

first, Melanie speaks next, and then they each speak one more time.   

Now let’s think about the script of this conversation with respect to the narrative 

boundaries it contains. There are two narratives. The original narrative, where Old Jake 

and Melanie are having a conversation. This narrative makes up the entire span of text in 

Example 2.7. The span of the original narrative has been highlighted in blue.  

It is important to note that the bolded character names have also been highlighted. 

The character names belong to the original narrative because this is a signal that a specific 

character will utter the proceeding text. The declaration of who is speaking in a script is 
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like the phrase “He said…” or “Old Jake said…” in a novel or short story. The character 

names are highlighted in the original narratives since they mark the beginning of a character 

speaking, which is an action in the original narrative.  

 

 

     OLD JAKE   

  I didn't realize people still read my books. 

     MELANIE   

  Of course they do. A friend recommended Anslem to me and I   

  read it straight through, twice in one night. 

     OLD JAKE 

  Twice in one night...? 

     MELANIE   

  It made me want to read everything you'd ever written, but when I   

  looked, all I could find were your "Collected Stories." I couldn't   

  believe it.  

  I'd finally found someone whose writing I really admired, and he'd   

  only published two books. 

Example 2.7: An excerpt from “Star Trek: Deep Space 9 – The Visitor” with dialogue 
highlighted. 
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This excerpt from “Star Trek” (Taylor, 1995) also contains an embedded narrative 

delivered by Melanie. The embedded narrative is highlighted in yellow in Example 2.8. 

Her narration is about her experience reading Old Jake’s books, and how she reacted to his 

writing. In this embedded narrative, the bolded character names are not highlighted. This 

is because the action of Melanie speaking belongs to the plot of the original narrative, and 

they do not belong to the plot of the narrative about Melanie’s past. It is important to notice 

that Old Jake’s speech is not part of the embedded narrative: he is not adding any 

information to the story of Melanie’s past, he’s just asking a clarifying question.  
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     OLD JAKE   

  I didn't realize people still read my books. 

     MELANIE   

                              Of course they do. A friend recommended Anslem to me and   

                              I read it straight through, twice in one night. 

     OLD JAKE 

  Twice in one night...? 

     MELANIE   

  It made me want to read everything you'd ever written, but  

  when I looked, all I could find were your “Collected Stories.”   

  I couldn't believe it. I'd finally found someone whose   

  writing I really admired, and he'd only published two books. 

Example 2.8: An excerpt from “Star Trek: Deep Space 9 – The Visitor” with an 
embedded narrative in highlights. 
 
 
2.3.2 Action 

The action describes what is happening in the world that the script depicts. Typically, the 

action is written in present tense, since it describes what is happening in the present 

moment. Dialogue prescribes what each character says, and action dictates what each 

character does, including the way they speak. Consider Example 2.9, where the action is 

highlighted in green. Typically, the action in a script will be bolded, but it is not a 

requirement.  
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Now I will discuss the functions of each action sequence. The first sequence 

describes actions that Jake does before he speaks. The second action is during Jake’s 

dialogue. It is a note for the actor playing Jake to take a moment to consider what he is 

saying. If the script is being read, then this stage direction allows the reader to imagine the 

character considering their actions. The third action sequence describes how Melanie reacts 

to what Jake says, and how she responds to him. The fourth action sequence instructs 

Melanie’s next line to be said softly. The final action sequence describes an action Jake 

takes. 

All five of these actions sequences describe actions that occur in the original 

narrative of this script. When considering the narrative boundaries for this excerpt, each 

action sequence is a part of the original narrative. In fact, the entire span of text in Example 

9 belongs to the original narrative. There are no embedded or interruptive narratives in this 

excerpt.  
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MELANIE 

  So that I could read them again... like it was the first time. 

 Jake smiles, nods that he understands. As he sits down with the tray... 

     OLD JAKE   

  There's only one "first time" for everything, isn't there?  

    (considers)   

  And only one last time, too. You think about that when you  

  get to be my age. That today might be the last time you... 

  sit in a favorite chair... watch the rain fall... enjoy a cup of tea. 

 Melanie looks at him, then cautiously asks the question  

 that brought her here. 

     MELANIE  

    (softly)   

  Can I ask you something... ? 

 He nods that she go ahead... 

Example 2.9: An excerpt from “Star Trek: Deep Space 9 – The Visitor” highlighted 
in green to distinguish action.  
 

 

2.3.3 Structural elements of scripts 

Structural elements are a final component of scripts that are separate from action and 

dialogue. They allow the readers or actors to distinguish between scenes and acts, and they 

give notes about the technical production for the performance, like a change of a camera 
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angle. In the study, I do not include structural elements in our narratives. These elements 

are not part of the story being told, they just instruct the actors and crew when a scene 

begins or ends, and tell the camera operators logistics for how the scene is shot.  

 Example 2.10 is an excerpt from Star Trek: Deep Space 9 (Taylor, 1995). It has 

the structural elements highlighted in pink. In this example, the structural elements 

prescribe the camera fading out, the first act of the show ending, the second act beginning, 

and the camera fading back in. It is important to note that the action sequence “INT. 

JAKE'S HOUSE (DISTANT FUTURE)” is not a structural element, because it is telling 

the reader that the current scene is set at Jake’s house. This is equivalent to the author of a 

novel saying where the next scene occurs, which is an essential detail of the narrative, and 

not structural information. Following the location of the new scene, is a description of what 

is happening: Old Jake is sitting, and Melanie is watching him. Finally, the dialogue of the 

scene starts.  
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JAKE 

   Dad... ? 

     SISKO 

   What... what happened... ? 

 But before Jake can reply, Sisko's body starts to FLICKER and  

 DISSOLVE like it did in the Defiant's Engineering room... 

  Jake watches as the terrible moment repeats itself... until Sisko completely 

completely DEMATERIALIZES again…  

Off Jake's confused, pained expression we... 

        

 FADE OUT. 

                        END OF ACT ONE                           

    DEEP SPACE NINE: "The Visitor" - REV. 08/04/95 - ACT TWO      20. 

                            ACT TWO                              

 FADE IN: 

 INT. JAKE'S HOUSE (DISTANT FUTURE)  

 Old Jake sits quietly, his thoughts far away in the  

 past.  

     OLD JAKE  

   I told Dax about what'd happened... 

Example 2.10: An excerpt from “Star Trek: Deep Space 9 – The Visitor” with 
structural elements highlighted.  
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Chapter 3 

Annotating narrative boundaries 

 

 

In 2017, I decided to work on narrative boundaries from natural text. Back then, there was 

no data annotated for this phenomenon. I needed a set of annotated data to teach computers 

to extract narrative boundaries from text, and to evaluate how accurate the computational 

models were. Therefore, I wrote an annotation guide, recruited annotators, trained them to 

annotate a text for narrative boundaries according to the rules in my annotation guide, and 

adjudicated their markings into a gold-standard corpus. This chapter is about my annotation 

study, and about a shared task I participated in regarding the annotation of narrative levels 

from text.   

 First, I will cover the logistics of the narrative boundary annotation study in §3.1. 

Then, in §3.2 I will talk about how inter-annotator agreement was measured. Next, I will 

discuss the results of the annotation study in §3.3. Finally, I will talk about the 2018 full 

name of SANTA before abbreviation (SANTA) workshop, in §3.4. The SANTA workshop 

in Hamburg, Germany, was about the construction of narrative level annotation guides. I 

lead one of the eight teams that participated, which involved submitting my annotation 

guide to be used for the workshop shared task, and doing a set of annotations according to 

my guide, as well as doing a set of one of the other team’s guides.   
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3.1 Annotation study logistics 

I hired two graduate students with interest and expertise in narrative to be annotators in the 

narrative boundary annotation study. The annotator experts recorded their judgments on a 

corpus of 27 texts, making up 287,777 words from various sources. The corpus is 

comprised of; 91,245 words from the short stories of Haruki Murakami; 85,927 words from 

novel excerpts; 54,293 words from TV show screenplays; and 56,312 words from court 

transcripts. The annotations were recorded by highlighting spans of text in PDF files that 

represent each narrative level. The specifics of the annotation procedure are discussed in 

§3.1.2.  

 

 

3.1.1 Annotators and training  

During the study, both of my annotators were graduate students: one studying creative 

writing, and the other linguistics. I chose an annotator from the creative writing department 

because I thought it would be useful to have annotator who has already invested significant 

time thinking about narrative structures, and the structure’s function in telling stories. 

Having an annotator from creative writing was a great asset, not just for precise 

annotations, but for hearing specific explanations as to why they made particular choices 

while annotating. My conversations with the annotator positively influenced the feature 

design of the automatic boundary extractor. 

My second annotator was from the linguistics department. I was interested in 

working with an annotator who was a linguist, because I thought it would be interesting to 
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observe how someone studying the way words are used to communicate meaning would 

interpret narrative boundaries. It was helpful to speak to an annotator about the subtleties 

of where the narrative boundaries occur in text.  

Once recruited, I began training these two graduate students to annotate narrative 

boundaries on English literature. The first step of training was instructing the annotators to 

read the annotation guide that I wrote. My annotation guide, which is the first guide of this 

type, is similar in content to Chapter 2 of my dissertation. My annotation guide covers the 

narrative theory necessary for annotating narrative boundaries. The guide also gives 

examples from novels and TV show transcripts, which illustrate the occurrence of different 

types of narrative boundaries, and how to make annotation decisions in difficult situations.  

The second step of training was discussing the annotation guide as a group. Meeting 

both annotators in person was useful, because I could clarify disagreeing annotations, and 

discuss confusing situations. Then I showed the annotators how to record their findings 

using the highlight feature in any PDF viewer. I annotated some short stories by Murakami, 

as a group, to gain experience annotating narrative text before the official study began. 

After this, the annotators were ready to begin annotating for the study. To obtain two 

independent annotations, the annotators worked on their own; they could not communicate 

or ask each other questions before adjudications. 

The first set of texts the annotators worked on was ten short stories from the 

Japanese novelist Haruki Murakami. I chose to analyze these texts because the author’s use 

of narrative levels is especially complex and layered. Michael Seats, a Murakami scholar, 

said that his writing is unique because of its “… use of the ‘fragment’ as the minimal unit 

of narrative discourse…” (Seats, 2006, pp. 12).  Seats argues that Murakami does all he 
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can to subvert the “literary paradigm”, where the narrator “records” history, and the reader 

“witnesses” it. Instead, Murakami “…posits a transcendental narrative perspective which 

liberates the range of subject positions available to the reader” (Seats, 2006, pp. 14).  

At first the annotators worked on annotating one text a week. I wanted to go over 

the annotations with the annotators weekly, so that I could monitor the agreement of the 

team: I wanted to catch recurrent mistakes early on, so that these common mistakes 

wouldn’t persist throughout the study. A common mistake at the beginning was 

highlighting trailing text after a narrative embedded in dialogue, as discussed in §2.2.1. 

Once I was satisfied with the annotators’ performance, I started assigning the annotators 

multiple texts at a time. They continued to read and annotate the assigned texts 

independently. 

After assigning 10 Murakami short stories, I began to assign excerpts from novels. 

First, I assigned the first chapter of a novel that is known for its embedded narrative, “Heart 

of Darkness” by Joseph Conrad (Conrad, 2016). For the remainder of the novel excerpts, 

my goal was to compile a set of texts from contemporary authors of a diverse background. 

I chose the first two chapters from the feminist author Miranda July’s “The First Bad Man” 

(July, 2015).  

I also choose a couple chapters from J.K. Rowling’s “Harry Potter and the Goblet 

of Fire” because she is one of the most popular writers of the 21st century (Rowling, 2000). 

Ironically, even though “Harry Potter” novels are children’s books, the topology of the 

narrative levels of the books are not as simple as I had expected. I thought that maybe this 

series could serve as a control, since it should have a simple or flat arrangement of narrative 

levels. However, I was wrong, since J.K. Rowling wrote these children’s books with a 
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structure that was just as complex as any of the other texts in my study. If children can read 

and understand narrative boundaries, then computers must understand this narrative 

structure too. This finding has helped me realize that the use of narrative levels is an 

essential element of communication and storytelling.  

Additionally, I chose excerpts from two novels by the Canadian author Margaret 

Atwood. I chose her work because her narratives and their structure are unique to her 

writing. In “The Blind Assassin” there are three different narrative frames: 1) newspaper 

clippings, 2) a first-person narrative by Iris, and 3) the pages of the fictional book The Blind 

Assassin, which is a book written by an author in the second narrative frame (Atwood, 

2000). In the third narrative frame, two unnamed characters are having a conversation, 

where they are telling the story of a made up dystopian world, the world of the “Blind 

Assassin”. Narratologist Barbara Dancygier analyzes the narrative levels, or “spaces” as 

she labels them, in her book “The Language of Stories: A Cognitive Approach” 

(Dancyiger, 2012). Regarding “The Blind Assassin” and other narratives, she says “The 

text is the form, while the story is what the text represents. While the text may be 

fragmented, incoherent, or temporally disorganized, the story is a temporal sequence of 

causally linked events leading up to a resolution of some conflict or problem” (Dancyiger, 

2012, p. 53). I also chose “The Handmaid’s Tale” (Atwood, 2017) because of the interlaced 

narrative structure: the narrator frequently tells stories from her past in the narrative speech, 

and hears fragments of other people’s stories in dialogue. The narrator even has 

psychological ticks where she repeats messages that were instructed to her by Aunt Lydia. 

Once the annotators finished analyzing and annotating the novels, I had them work 

on TV show transcripts. Before the annotators recorded their annotations, I instructed them 
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to watch the episodes of the TV shows. Then they were to read through the scripts, and 

highlight the correct narrative levels. They annotated an episode of “Seinfeld” called “The 

Bris” (Charles, 1993). I selected this episode because there are so many narratives 

embedded in the dialogue, and multiple overlaps between narrative levels.  

Next, I had them annotate the “Bad Blood” episode of “The X-Files” (Gilligan, 

1998) because it has three embedded narratives that tell the same story, but from three 

different perspectives. The last two TV shows were two episodes of “Star Trek: The Next 

Generation” (Moore, 1993 & 1994). These are episodes with lots of time travel, tellings of 

past and future stories, visions, and dreams. Hence, they made for compelling texts for 

narrative level annotation. The final three TV shows selected were from the science fiction 

genre, not because of a conscious decision on my part, but because they had atypical story 

telling methods.  

Finally, I had the annotators work on transcripts of court cases. These cases 

included excerpts of Monica Lewinsky’s grand jury testimony (2000), and excerpts from 

two supreme court cases: Obergefell v. Hodges (2015), and Bush v. Gore (2000). I chose 

court cases because they are rich with embedded narratives about the past, and I also 

wanted to see what would happen when I analyzed the narrative boundaries of court 

proceedings. This work might prove useful in advancing computational understanding of 

court cases.  
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3.1.2  Annotation procedure 

For the novels, short stories, and court cases, I instructed each annotator read through the 

full text once, without making any annotations. Then, they reread the text, this time 

highlighting the spans of each narrative level in a unique PDF. For each unique narrative 

level, the annotators were instructed to make a copy of the PDF. Then they used the 

highlight feature of a PDF viewer, and highlighted the spans of text the current narrative 

level occupies.  

 Then, I had the annotators fill out a spreadsheet with some metadata for each 

narrative level, including details such as what is the POV of the narrator for each narrative, 

if the current narrative is embedded then what narrative is it embedded in, and whether the 

narrative contains a time shift, vision, or dream. These extra bits of metadata were included 

because I wanted the annotator to be consciously aware of these characteristics while 

recording their decisions. A final data point was collected: a title for each narrative level. 

This was done so that the annotators could have a name with semantic meaning for each 

narrative, and not just a number to represent it.  

 

 

3.2 Agreement metrics 

I used two agreement metrics to measure inter-annotator agreement: Cohen’s Kappa 

(Koch, 1977), and a metric I devised, agreement relative to disagreement or ARD. Both 

metrics are first calculated for each narrative level. Then the agreement for each narrative 

level from a text are averaged together. When I report an agreement for a text, as in Table 
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3.1 – 3.4, note that I am reporting the average agreement, for that metric, averaged over 

the agreement for each narrative level.  

 

 

Figure 3.1 Confusion matrix 

 

 

3.2.1 Cohen’s Kappa for span agreement 

A value for Cohen’s Kappa (Koch, 1977) is calculated for each narrative level. The 

ideal value of Cohen’s Kappa is 1, which denotes perfect agreement. The range for Cohen’s 

Kappa is between -1 and 1. Any value of Kappa below 0 is considered to have no 

agreement, between 0 and 0.2 slight agreement, between 0.2 and 0.4 fair agreement, 

between 0.4 and 0.6 moderate agreement, between 0.6 and 0.8 substantial agreement, and 

0.8 and 1 is almost perfect agreement (Koch, 1977). 

  To calculate Cohen’s Kappa, I populate a confusion matrix (Figure 3.1) for each 

narrative level. With respect to a narrative level, this is how the confusion matrix is 

populated: 
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True positives: the length in characters of the text spans that both annotators 

highlighted for a narrative level. 

True negatives: the length in characters of the text spans that both annotators did 

not highlight for a narrative level. This measures how long are the spans of text that 

both annotators said do not belong to a narrative level. 

False positives: the length in characters of text spans where annotator 2 said belong 

to a specific narrative level, while annotator 1 said it did not belong to this level. 

This is a disagreement. 

False negatives: the length in characters of text spans where annotator 1 said 

belong to a specific narrative level, while annotator 2 said it did not belong to this 

level. This is also disagreement. 

  

The values in each quadrant of the confusion matrix are the sums of the lengths of a span 

meeting a certain condition. The lengths of each span are calculated by counting the 

number of text characters in the span. 

 

 

3.2.2 ARD for span agreement  

A value for agreement relative to disagreement is calculated for each narrative level. Again, 

for each narrative level the confusion matrix is populated using the same procedure as in 

§3.2.1. Then the value of the ARD metric is calculated for each narrative level using 

Equation 3.1. Finally, to obtain the ARD for a full text, the ARD of each narrative level 

from the text is averaged together.  
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The goal of this metric is to measure how long the spans of annotator disagreement 

are relative to the length of agreement for inclusion in the level. To calculate this, I add up 

the length of the spans where the annotators disagree. This is the sum of the false positives 

and false negatives in the confusion matrix. Then, I normalize the sum by the length of the 

spans where the annotators agree, represented by the value for true positives in the 

confusion matrix. Right now, this ratio gives us disagreement with respect to agreement. 

To covert this into a number that represents agreement (and not disagreement) I subtract 

the disagreement ratio from the number one.  

 

𝐴𝑅𝐷	 = 		1 −
			𝑓𝑎𝑙𝑠𝑒	𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 + 𝑓𝑎𝑙𝑠𝑒	𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠			

𝑡𝑟𝑢𝑒	𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 	 

Equation 3.1 Equation for agreement relative to disagreement (ARD) 

 

The range of values for ARD is from negative infinity to positive one. Perfect agreement 

is when ARD is positive one. Anything below zero indicates less agreement that 

disagreement for the current narrative level. Our goal is to have high agreement, and this 

is represented by an ARD close to one. 

 Before I explain the results, let’s discuss the difference between Cohen’s Kappa 

and ARD. For the Murakami short stories, the average Cohen’s Kappa was 0.94, and the 

average ARD was 0.83. For the corpus of novels, the average Cohen’s Kappa was 0.93 and 

the average ARD was 0.81. In these experiments the ARD is a harder metric than Cohen’s 

Kappa.  
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3.3 Results 

Corpus 
Cohen's 
Kappa ARD Sentences Words 

 Narrative 
levels 

Court case 
transcripts 0.78 0.66 2870 56312 42 
Novels 0.93 0.8 5099 85927 124 
Murakami's 
short 
stories 0.94 0.83 6642 91245 101 
TV show 
transcripts 0.86 0.74 4472 54293 57 
   Total: 19083 28777 324 

Table 3.1 Summary of inter-annotator agreements 

 

In this section I present the results for the four types of texts. Table 3.1 summarizes the 

results by type of text. Here the Cohen’s Kappa and ARD columns represent the average 

inter-annotator agreements for all the texts of the same type. The sentence column 

represents how many sentences for that type of text were used in my study. The words 

column represents how many words for that type of text were included in my study.  

 

 

3.3.1 Short stories by Haruki Murakami 

The inter-annotator agreements for the Murakami short stories are the highest of the text 

types in the study, across both agreement metrics. It is possible the results are the best since 

I trained my annotators using other short stories by Murakami that were not used for 

creating the gold-standard. Typically, inter-annotator agreement gradually rises as an 

annotation study progresses, but in our study, the annotators first worked on the ten 

Murakami texts.  
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I think the high agreement is due to how Murakami uses narrative levels as a literary 

device in his writing. Changing narrative level is essential for the stories Murakami tells. 

The reader cannot passively consume these short stories and not be aware of the ever-

changing narrative levels. Changes in these narrative levels are front and center in these 

stories, which is why I think the annotators were so successful in identifying them.  

 

Title 
Cohen's 
Kappa ARD Sentences Words 

 Narrative 
levels 

All God's 
Children Can 
Dance 0.92 0.78 470 7642 11 
Birthday Girl 0.95 0.91 401 5894 4 
Drive My Car 0.96 0.94 1000 13166 6 
Honey Pie 0.94 0.85 831 11353 16 
Landscape with 
Flatiron 0.87 0.69 572 7184 6 
Scheherazade 0.94 0.71 728 10837 13 
Super Frog 
Saves Tokyo 0.87 0.61 610 8214 13 
Thailand 0.95 0.89 510 7342 8 
UFO in Kushiro 0.97 0.93 534 6877 3 
Yesterday 0.98 0.96 986 12736 21 
Average: 0.94 0.83    
  Total: 6642 91245  

Table 3.2 Short story inter-annotator agreement results 

 

 

3.3.2 Excerpts of novels 

The inter-annotator agreement for excerpts from novels was the second highest of all the 

text types, on both metrics. The results are on par with the agreements for short stories. 
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This is most likely because both sets of texts are written by professional/ lauded authors, 

who are writing fiction, that is intended to be read by readers. These texts are designed to 

be consumed by readers, and the authors want the readers to be able recognize, and keep 

track of each narrative level, so that they can make sense of the story.  

 

Author Title 
Cohen's 
Kappa ARD Sentences Words 

 Narrative 
levels 

Margaret 
Atwood 

The Blind 
Assassin 0.96 0.91 778 10632 24 

Margaret 
Atwood 

The 
Handmaid's 
Tale 0.93 0.83 799 13359 21 

Joseph 
Conrad 

Heart of 
Darkness 0.97 0.99 887 17217 2 

Miranda 
July 

The First 
Bad Man, 
chapter 1 0.93 0.77 234 3043 7 

Miranda 
July 

The First 
Bad Man, 
chapter 2 0.87 0.47 568 7856 12 

James 
McBride 

The Good 
Luck Bird  0.94 0.84 591 10876 27 

Claudia 
Rankine Citizen 0.88 0.69 669 12017 19 

J.K. 
Rowling 

Harry 
Potter and 
the Goblet 
of Fire 
Chapter 2 
and 3  0.94 0.87 573 10927 12 

 Average: 0.93 0.8    
   Total: 5099 85927  

Table 3.3 Novel inter-annotator agreement results 
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3.3.3 TV show transcripts 

Show Title 
Cohen's 
Kappa ARD Sentences Words 

 
Narrative 

levels 
Seinfeld The Bris 0.94 0.86 644 5908 5 

Star Trek: 
The Next 
Generation Tapestry 0.84 0.81 986 12683 17 

Star Trek: 
The Next 
Generation 

All Good 
Things… 0.81 0.59 2172 26496 22 

The  
X-Files 

Bad 
Blood 0.85 0.7 670 9206 13 

  Average: 0.86 0.74     
    Total: 4472 54293   

Table 3.4 TV show transcript inter-annotator agreement results 

 

The inter-annotator agreements for TV show scripts are a bit lower than those of short 

stories and novels. The agreement is still high, but it’s not as agreeable. The concept of 

narrative level was created to explain literature. Using the narrative level construct to 

analyze TV show scripts is not as straightforward as it is for literature. There are some 

difficulties: structural text like action, scene changes, and character speech markers are 

recurring elements of scripts, and these elements are discussed in §2.3. Character speech 

markers are like a novel announcing who is speaking (i.e. “Harry Potter said…”). Many of 

the annotation disagreements for TV show scripts came from being unsure how to handle 

the structural text. The agreement was still above 0.80 on the Cohen’s Kappa metric, which 

is near perfect agreement, but it was still harder to annotate than the texts from literature.  
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3.3.4 Court case transcripts 

Title 
Cohen's 
Kappa ARD Sentences Words 

 
Narrative 

levels 
Bush v. 
Gore 0.69 0.54 468 12126 5 
Comey 
testimony 0.79 0.68 540 11888 11 
Lewinsky 
testimony 0.83 0.71 996 12669 10 
Obergefell 
v. Hodges 0.81 0.7 866 19629 16 
Average: 0.78 0.66     
  Total: 2870 56312   

Table 3.5 Court case transcript inter-annotator agreement results 

 

It is interesting that the lowest agreement scores are from the court cases. These are the 

only texts that weren’t designed by writers, for readers or viewers to consume their stories. 

The conversations were recorded by court transcripts. They are spontaneous, and the 

speakers don’t have time to edit and distill their thoughts into clear narratives. On the other 

hand, writers of novels and short stories take time to plan, write, edit their stories, and think 

about how they will present their narratives to be read.  

Therefore, it should be expected that the court cases have the lowest agreement for 

narrative level identification. These texts are rawer, and noisier than any other texts in the 

study. The speakers interrupt each other, they deflect questions, and not all the text is 

narrative discourse. Despite these realities, I still chose to include court case transcripts in 

the study, because computers need to be able to understand noisy and complicated texts as 

well as understand noisy and complicated people. This was a first effort in annotating 
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narrative levels in court transcripts, and the agreement was substantial, but there is room 

for improvement. I think it would be useful to spend more time annotating court case 

transcripts as a group before assigning new texts to the annotators.  

 

 

3.4 SANTA Workshop shared task 

After I completed my annotation study I participated in a shared task on annotating 

narrative levels. Usually, shared tasks are competitions where teams of NLP researchers 

submit computational models that are trained to solve a specific problem. Shared tasks “… 

are indisputably drivers of progress and interest for problems in NLP. … Shared tasks 

revolve around two aspects: research advancement and competition” (Nasim, 2017). Each 

model is evaluated on a set of test problems, the set of models are ranked by their 

performance, and a winner is usually chosen. In the case of SANTA, the first phase focused 

on comparing narrative level annotation guides, and the second phase will evaluate the 

performance of different programs that can automatically extract narrative levels from 

English literature. At the time of writing, phase 1 is currently underway, and phase 2 will 

start in 2020. 

The first phase of the SANTA shared task occurred just a few months after I 

finished creating my gold-standard. The task began in 2018, when a group in Germany 

organized a shared annotation task on narrative levels. The shared task was called 

Systematic Analysis of Narrative Texts through Annotation or SANTA.  

I participated, along with teams from seven other universities. Each of the eight 

teams submitted an annotation guide, annotated a set of eight short texts according to their 
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own annotation guide, and annotated the same texts according to one of the other groups 

guides. Also, a team of students at the University of Hamburg was trained to annotate 

according to each guideline, and carried out a third set of annotations according to each 

annotation guide. This was done to compare the effectiveness of each annotation guide. 

The shared annotation task is only the first phase of the SANTA task. Phase 2 is a 

competition on the automatic extraction of narrative levels on natural text. This phase will 

be held in 2020, and I will compete using the programs based on those discussed in Chapter 

4. I plan to improve the narrative level extractor over the next year.  

Back in 2017 when there were no texts annotated for narrative levels. My only 

option was to create my own corpus. However, there is finally interest in this task, and 

there is a community that is now trying to figure out affective methods for the annotation 

of the narrative level phenomena, but before recently there were no resources available. At 

the time of writing, my work is the only publicly shared work detailing experiments on the 

automatic extraction of narrative boundaries. In 2020, the second phase of SANTA will 

begin, and other researchers will have their narrative level extractors compete against mine 

to see which one is the most accurate. At the time of writing, the study of the computational 

understanding of narrative boundaries is in a period of growth.  

Some of the other teams misinterpreted my annotation guide. They were only 

instructed to differentiate between embedded and interruptive narratives, but they thought 

that they needed to say whether each narrative level was a flashback, flashforward, vision, 

or dream. This was an incorrect assumption, and nowhere in our annotation guide did it 

say that this was something they were supposed to annotate. However, my annotation guide 

gives examples about how time shifts, and dreams or visions, can be used to signal certain 
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changes in narrative levels. This confusion was not a problem for the annotation study that 

I ran. However, for SANTA phase 1, I was not able to train the other annotators to use our 

annotation guide. They just read the guide, and annotated without having a chance to speak 

to me about how the guide should be applied. 

 Ideally a guide should be enough to teach an annotator to make annotations, but in 

practice it is much better to personally train annotators how to make annotations. Of course, 

an annotation guide is necessary for establishing a theoretical common ground, and rules 

for making decisions. Still, there can be a gap when trying to go from theory to making 

annotation decisions. I have found that doing annotations with your annotators, and having 

open discussions about why annotation decisions are being made is invaluable for 

harvesting quality annotations.  

 Early on in the workshop, there seemed to be two reasons people wanted to produce 

annotation guides for narrative levels: 1) researchers who wanted to use these guides, to 

produce annotations with high inter-annotator agreement to use for training and testing of 

computational models and 2) narratologists or digital humanities scholars who wanted to 

create annotation guides, each with different interpretations of the concept of narrative 

level, which can be used to fuel discussion about narrative levels. Most of the teams could 

be grouped into the narratologists camp. Personally, I participated because of my interest 

in using annotations for supervised machine learning. Other than myself, there was only 

one other team who participated because they were interested in using these annotations 

for construction computational models of narrative levels.  

 This made for an interesting workshop, because my goal was the inverse of the 

narratologists’ goal. The narratologists were interested in producing guides that use 
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different theories of narrative levels, so that when texts are annotated according to the 

guidelines, the annotations would be different. The narratologists were more interested in 

getting annotations with different markings for each narrative level, because they wanted 

to discuss the differences in the schools of thought for narrative theory.  

This is at odds to my goal, because I want a set of annotations, which represent the 

narrative boundaries, and to treat these annotations as canonical. I went into the workshop 

thinking everyone wanted to harvest annotations with high inter-annotator agreement. I had 

this assumption because the second phase of the workshop is a competition on the 

automatic extraction of narrative boundaries from text. I thought that since this is the goal 

of the second phase of the workshop, that the goal of the first phase would be to construct 

an annotation guide, or an amalgamation of annotation guides that would enable annotators 

to produce accurate annotations.  
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Chapter 4 

Automatic extraction of narrative levels from text 

 

 

The main accomplishment of my dissertation is the identification of features that allow for 

the automatic extraction of narrative levels from long form texts. Specifically, identifying 

point of view, diegesis, story content, and when main characters are mentioned in order to 

automatically extract narrative levels. 

Once again, narrative boundaries are the locations in text between different 

narrative levels. Narrative levels are the spans of text where different narratives are being 

told. Each narrative level has at least two narrative boundaries, the beginning and end of 

that narrative, but often a narrative can occupy different non-contiguous spans of text. A 

narrative is a telling of a story. A story is a series of events that is narrated over time. 

Sometimes an event, that takes place in the world of a story, results in a new narrative. For 

example, this can occur in dialogue when a character may tell a story to another character. 

This is an example of an embedded narrative. On the other hand, the telling of the current 

story could suddenly be interrupted, and a new narrative takes over. The interruptive 

narrative level phenomena are less common than embedded narratives, but it is still an 

element of narrative structure. Please refer to §2.2 for a more rigorous definition of 

narrative levels, and how they are used in storytelling. 

Why is it important to detect the location of narrative boundaries in text? Higher 

level information extraction, like plot extraction, and event coreference, would be 

inaccurate and nonsensical if narrative levels have not been distinguished. How could a 
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computer decide what the plot of a story is, if it does not know what span of text the story 

is told in? Narrative level extraction is a necessary first step for parsing narrative text; It 

reveals the structure of which narratives occupy which spans of text, and then finer grained 

analysis can be carried out on each distinct level.  

In this chapter, I will briefly look at the concept of narrative boundary, and other 

narratological characteristics that are necessary for this discussion. For a more in-depth 

discussion of the theory, please see Chapter 2. In §4.1, I will discuss the pipeline for 

extracting features used for automatic narrative level extraction. In §4.2 I will discuss the 

experiments used to evaluate the performance of the automated extractions. In §4.3 I will 

discuss the findings.   

I plan to submit the contents of this chapter, and the previous chapter, to one of the 

main Association of Computational Linguistics conferences (ACL, EMNLP, NAACL, or 

EACL).4 

 

 

4.1 Designing the narrative level extractor 

4.1.1 Discussion of the scope of the work 

In order to design this project, I examined the scope of the problem: what granularity of 

text spans should the computer make decisions about, and what options should the 

computer decide between? 

                                                
4 https://www.aclweb.org/portal/ 
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For the experiments in this chapter, I decided that given a long narrative text as an 

input, the computer must decide which sentences belong to an embedded narrative. This is 

framing the problem of detecting narrative levels as binary classification, where the 

computer decides whether each sentence belongs to the original, lowest level of narrative 

in a text, or not (i.e. the sentence is part of an embedded or interruptive level). This is a 

simplification of the problem of narrative level extraction. Next, I will discuss the 

simplifications, and talk about what is lost when I make these generalizations.  

First, narrative boundaries might occur at any point in a sentence, but the programs 

discussed in this chapter make classifications about entire sentences. The computer is 

deciding if a sentence contains text from different levels of narrative or not. With respect 

to the gold-standard annotations, a sentence contains text from a different level of narrative 

if there is an embedded or interruptive narrative anywhere in that sentence. Ideally, the 

classifier should be able to look within a sentence, and figure out between which words a 

narrative boundary occurs. At this stage of research, I am trying to figure out if there is a 

change of narrative level within a sentence.  

Second, I treat interruptive narratives like embedded narratives because of our 

scope. Although interruptive narratives are theoretically different than embedded 

narratives, they both represent a change of the story being told. The main difference is that 

for embedded narratives, there is an event in the lower level that leads to a telling of a new 

narrative, while in an interruptive narrative there isn’t necessarily an event that causes the 

new narrative to be told—the new narrative interrupts the telling of the old narrative.  

Third, the detector can only decide if there is a new narrative level or not. In reality, 

this is more complicated than a binary decision. There can be many levels of embedding, 
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in some of our texts there were three levels of embedding (a narrative, within a narrative, 

within a narrative). It is important to detect whether a narrative is embedded or interruptive. 

It is possible though to rerun the extractor on text from an embedded narrative, and decide 

recursively whether there is another level of embedding. 

Limiting the scope of the task enabled me to design a narrative level extractor that 

can do a very specific task: decide whether there is a change in narrative levels. I have not 

run experiments about what type of boundary is between the levels, or how many levels of 

embedding is occurring. To be sure, this is a simplification of the depth of the full problem 

of narrative level parsing/extraction, but my work shows a positive result, which is the first 

result published for the task of narrative boundary extraction. Although I am not attempting 

to solve every part of the problem, my work can be used to help make the more complicated 

decisions and to point toward what types of features should be used. My work is an 

important first step pointing the way toward finer grained narrative level extraction. 

 

 

4.2 Feature extraction 

In this section, I will discuss the design of the programs I used to automatically extract 

features for narrative levels from raw text. All programs described in this chapter were 

implemented in Java 8 (Gosling, 2014), using the Eclipse IDE5.  There are two main types 

of programs that I implemented for this work: 1) programs that extract the value of features 

from raw text, and save them to a cache/disk, and 2) programs that use the values of specific 

                                                
5 https://www.eclipse.org/ide/ 
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features from specific texts, to train a computation model, and evaluate the performance of 

this model. The two phases of programs can be visualized in Figure 4.1.  

I used a two-phase approach to this problem because feature extraction can take a 

long time. Some of the features, like story-content and diegesis, can take an hour to extract 

for the texts in this study. Saving the values of the features for each text to a disk allowed 

me to quickly train support vector machine (SVM) models, and run many experiments 

using different sets of features. In prior projects, especially with the story extractor 

(Chapter 5), I was not able to run as many experiments on my SVM models, because each 

time I trained a model, I would need to re-extract the same features from raw text. I was 

wasting time—computationally—extracting the same features from text every time I 

needed to train or test a SVM model. 

After wasting so much time waiting for the same features to get extracted for my 

story extractor experiments, I made a design decision for the narrative level experiments:  

 

1) Extract the features once, and save them to disk 

2) Load the features to vectors when training or testing SVM models 

 

 It might seem that this is an obvious design choice, but it is something that I didn’t 

have the foresight to implement until after I had already wasted countless hours waiting for 

the same features to get extracted for my story extractor. Having all the features cached 

allowed me to run experiments where I could tweak the encodings of the features or the 

values of the SVM hyperparameters. Although it took longer to write code that serialized 
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the feature values to disk, it saved time in the long-run, because the features only had to be 

extracted once.  

 

 

Figure 4.1 The two phases of programs for narrative level extractor 
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features give information about how the narrator is telling their narrative. 
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• Second, character-based features were extracted, because knowledge of which 

characters appear when, and whether they are main characters is important for 

classifying narrative levels.  

• Third, features based on word-embeddings (Mikolov, 2013). Unfortunately, 

these features lead to the training of models which were unable to extract 

narrative boundaries as well as the features from the first three classes of this 

list. I still discuss the engineering and the failure of these features to classify 

narrative levels, to provide transparency on a negative result. 

 

 

4.2.1 Extraction of narrative characteristics features 

Let’s first discuss the feature extractors that use pipelines developed in my prior work. In 

this chapter, I will treat the POV, diegesis, and story classifiers as black boxes which 

produce binary classifications. In reality, these individual boxes are complicated processes, 

each with their own unique feature extraction pipelines. See §5.3 for story classification, 

§6.4.3 for POV extraction, and to §6.4.4 for diegesis classification. See Figure 4.2 for the 

pipeline that extracts POV, diegesis, and story classifications from raw texts, and caches 

the feature values for use in the training and testing of computational models in phase 2.  
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Figure 4.2 Pipeline for narrative characteristics feature extraction 

 

When extracting features for narrative level detection, the POV, diegesis, and story 

classifiers were run on each paragraph of text as inputs. This contrasts with running the 

classifiers on texts of sentence granularity. This is important to note, because the 

annotations are on the sentence granularity, and narrative levels can occur within a 

paragraph. However, the story extractor was trained on paragraphs of text, and the POV 

and diegesis classifiers were trained on texts that are around a page long, or a few 

paragraphs.  

Although it would be ideal to run the narrative characteristic classifiers on each 

sentence of the text, the implementations are inaccurate when run on short texts, like single 

sentences. I decided it would be better to give the narrative characteristic classifiers texts 

that were closer to the length of which they were trained. So, I ran them on texts that were 

a paragraph long. Going forward, it might be beneficial to retain the narrative 

characteristics classifiers on texts of varying sizes, especially for short spans of texts. 

Also, I made a slight adjustment to the POV and diegesis classifiers: Usually the 
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usually not part of the narrator’s narrative. But, for the process of identifying narrative 

boundaries, I want to know how the POV and diegesis changes in the text that is within 

quotes. To rectify this, I modified the POV and diegesis classifier, so that the text in quotes 

is not removed. Hence, all text from each paragraph is analyzed by the POV and diegesis 

classifiers, including quoted text. It would be a great loss, with respect to finding narratives 

embedded in dialogue, if the POV and diegesis detectors could not analyze quoted text.  

Ideally, I want to generate classifications for each sentence, but due to the design 

of my POV, diegesis, and story classifiers I can only generate classifications for each full 

paragraph. I want sentence level classifications because the SVM for narrative level 

extraction uses feature vectors from each sentence. The following is the procedure for 

propagating paragraph level classifications (like POV, diegesis, and story content) down 

to the sentence level:  

 

1) A raw text is broken up into a list of paragraphs, and each paragraph is broken 

up into a list of sentences. 

2) Each paragraph is classified for all three narrative characteristics (POV, 

diegesis, and story content). 

3) For each sentence, the narrative characteristic classification of the paragraph 

that the sentence belongs to is assigned to the current sentence. 

 

For an illustration of this process, see Figure 4.3, which shows the procedure for going 

from a list of paragraphs, all the way down to sentence level POV classifications. This 
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propagation process is done three times for each text, once for each of the three narrative 

characteristics.  

 

 

Figure 4.3 Procedure for paragraph to sentence propagation 
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It is useful to note, that on a 2014 MacBook Pro, with 16 GB of RAM, and a 2.6 GHz Intel 

Core i7 processor, the story detector takes about 40 minutes to classify each text, which 

range between 7,000 and 15,000 words in length. The diegesis detector takes about 25 

minutes on average. The POV detector is much quicker, and takes less than a minute to 

classify a full text.  

 

 

4.2.2 Extraction of character features  

Preprocessing raw text is usually the first process in an NLP pipeline. In my pipeline, 

preprocessing was necessary for extracting the character features. The preprocessing 

pipeline detailed in this section was used by the character feature extractors.  

The character based features were created specifically for the task of automated 

narrative boundary extraction. Therefore, I had to implement a new pipeline for these 

features. A good way to simulate knowledge of which characters occur when, is to analyze 

coreference chains. A coreference chain is a data structure that represents the mentions of 

an entity in a text. I assume that each coreference chain represents a character in narration 

being told.  

Often, automatically extracted coreferences do in fact represent characters from the 

narrations. The longest coreference chains tend to represent characters that are mentioned 

the most in a novel. For a succinct example, let’s consider “Harry Potter and the Goblet of 

Fire” (Rowling, 2000). The longest coreference chain, according to when I ran Stanford 

CoreNLP’s Coreference Chain extractor, is for “Harry Potter”. This is hardly a surprising 

result. Why? 
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The first step in extracting the character features is to use Stanford CoreNLP for 

preprocessing (Manning, 2014). Specifically, I use tokenization, sentence splitting, part of 

speech tagging, lemmatization, named entity recognition, and parse tree generation. Once 

this preprocessing pipeline has been executed, I use the Stanford Coreference Resolution 

program to extract coreference chains from the entire document (Clark, 2016). Then I 

process the list of coreference chains that Stanford produces, and sort them with respect to 

the length of each chain. This process is illustrated in Figure 4.3. 

 

 

Figure 4.4 Pipeline for sorting coreference chains 
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is in fact mentioned. If the main character is not mentioned then the main character 

feature value is encoded as -1, or false, to represent that the main character is not 

mentioned in the current sentence.  

2) The main character sum feature represents how many of the top three main 

characters are mentioned in each sentence. This feature’s design also assumes that 

the main characters are the referents referred to in the longest coreference chains. 

Instead of just paying attention to the most mentioned character, I am counting how 

many of the three most mentioned characters appear in each sentence. The value of 

the feature is calculated for each sentence by looking at the three longest 

coreference chains, and count how many of them have a mention in the sentence of 

interest. There are 4 possible encodings for this feature: 0 if none of the top three 

main characters are mentioned, 1 if only one of the main characters are mentioned, 

2 if two of the main characters are mentioned, and 3 all three of the main characters 

are mentioned. This feature is calculated for each sentence.  

 

Once the values of both features, for an entire text, are extracted they are saved to disk. 

This is done by writing the values of each type of feature are written to a text file. The 

feature values for each sentence are all written on the first line of the text file, with each 

sentence value delimited by white space. The process of extracting the character features 

on a 10,000-word text takes between five and ten minutes on a 2014 MacBook Pro, with 

16 GB of RAM and a 2.6 GHz Intel Core i7 processor. 
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4.2.3 Extraction of semantic embeddings  

A third type of feature was extracted from each text: features based on word embeddings 

(CITE). I used DeepLearning4J6 to load Google’s 300 Word2Vec model (Mikolov, 2013)7. 

This model was trained on 100 billion words of newswire. The model is able to map from 

English words to vectors of length 300 that has the semantics of the word embedded into 

the encoding.  

 I used Google’s pretrained model to get word embeddings for each word in my 

corpus. Then using vector algebra, I summed together the vectors for each word in a 

sentence, and normalized the length of the vector. I cached the vector that represented each 

sentence, so that I could experiment with using them to obtain some features. Here are 

three types of sentence vector based features I tested: 

  

1) The cosine similarity between the vectors for the current sentence and the 

previous sentence. 

2) The cosine similarity between the vectors for the current sentence and the next 

sentence. 

3) The raw values of all 300 elements of the sentence vector, for either the current 

sentence, or the current sentence and either adjacent sentence. 

 

                                                
6 https://deeplearning4j.org/ 
 
7 https://code.google.com/archive/p/word2vec/	
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Unfortunately, the features I tested based on sentence embeddings did not have a positive 

effect on the narrative level extraction process. The first set of sentences embedding 

features is supposed to simulate the semantic similarity between two sentences. My 

hypothesis was that the semantics of sentences near narrative boundaries would have low 

similarity. However, when I trained and tested the SVM using this feature, performance 

would suffer, and the models created were not viable. I also had a hypothesis that there 

might be some hidden (to human eyes) semantic signal for shifting between narrative 

levels. Therefore, I also tested using the raw vectors as features helped the extraction 

process, but, it did not. 

 

 

4.3 Experimental procedure 

First, features are extracted for each text, and saved to disk. As stated in 4.3 this process is 

separated from the SVM model training and testing to save time. The feature extraction 

pipeline can take about two hours to extract each feature from a single text. Extracting each 

feature from the full short story corpus takes around 20 hours. It would be a waste of time 

to re-extract the features each time a model is trained or tested. 

 Once features are extracted, the SVM models can be trained. In §4.3.1 I will discuss 

how I use cross-validation to train models and evaluate their performance. In §4.3.2 I will 

discuss how undersampling is used to balance the training folds evenly between the 

different classes. §4.3.3 lists the hyperparameters for the SVM and Java library that 

implements it. In §4.3.4 I discuss how I go from the gold-standard annotations to sentence 

annotations that can be used for training and testing the SVM models.  
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4.3.1 Leave-one-out cross-validation 

When I trained an SVM model, and tested its performance using a variation of leave-one-

out cross-validation (Stone, 1974). Usually, leave-one-out cross-validation has as many 

training sets as there are data-points. So, if there are 100 data-points, each model will be 

trained on 99 points, and tested on only one, and this process will be done 100 times, so 

that each point can get a chance to be tested. 

For narrative level extraction, the granularity of being left-out is a full text. For 

example, in the Murakami short story corpus, there are ten short stories. Hence, I use the 

feature vectors from nine texts to train a SVM model, and test it on the one that was left 

out. This process is done ten times, so that each short story in the Murakami corpus can be 

tested on. For the case when I am doing experiments on both the Murakami corpus and the 

novel excerpts, there are 18 texts in total, so there are 18 models trained, each on 17 texts, 

so that each of the 18 texts has a chance to be tested on.  

Typically, ten-fold cross-validation is used. This is when the data is divided into 

ten equal folds, nine of the folds are used for training the computational model, and the last 

fold is reserved to test the performance of the model. This is carried-out ten times, so that 

each fold gets to be the test data. Ten-fold cross-validation is used to evaluate the SVM 

models in chapters 5 and 6.  

I choose to use leave-one-out cross-validation, since it seemed to be a more natural 

fit to the task at hand. In all my previous experiments (those in chapters 5 and 6) there were 

hundreds, or thousands of texts that needed to be classified, and each of these texts were 

independent of each other. However, in the narrative level extraction experiments, there 

were on the order of ten texts, each with hundreds of sentences to classify. Since the 
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sentences in each text were dependent on each other, it made sense to treat each text as an 

individual unit, and to either train or test on the full text.  

  

 

4.3.2 Undersampling 

I used undersampling during training to prevent the majority class from overwhelming the 

classifier (Japkowicz, 2000). In the corpus of novels and short stories annotated for 

narrative levels, around 60% of sentences are part of embedded or interruptive narratives. 

Undersampling is a technique used to help supervised machine learning classifiers learn 

more about a class that has a significantly smaller number of examples relative to an 

alternative.  

To implement the undersampling, the following technique was used to augment the 

training processes: 

 

1) For each span of a new narrative level, the classifier is trained on the first two 

and last two sentences of the narrative level. These sentences represent the 

positive examples, or the sentences from a narrative level that is higher than the 

original level, either embedded or interruptive narratives. 

2) The classifier is also trained on a random set of sentences that belong to the 

original narrative level (from sentences that do not belong to embedded or 

interruptive narratives). The number of randomly selected sentences is equal to 

the number of sentences chosen from the boundaries in the first prescription on 

this list.  
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These rules force our classifier to undersample both the embedded/interruptive class, and 

the original narrative classes.  

Undersampling is only done on the training data. For the testing, I must evaluate 

the full set of annotations, not just the boundaries of the embedded/interruptive class, and 

not just random selections of the original narrative class.  

 

 

4.3.3 SVM 

I used the Java implementation of LibSVM (Chang and Lin, 2011) to train an SVM 

classifier 

with our narrative characteristics and character based features. The hyper-parameters for 

the linear kernel were γ = 0.5, ν = 0.5, and c = 20. 

 

 

4.3.4 From the gold-standard to sentence annotations 

I had to decide how to interpret the narrative level annotations produced by the 

annotation study in chapter 3. Figure 4.5 contains an example of the beginning of the 

narrative level annotation spreadsheet for the novel “The Handmaid’s Tale” from the 

gold-standard. This spread sheet is from “The Handmaid’s Tale” by Margaret Atwood. 

The first column contains unique identifiers for each narrative level. The second column 

contains the position, with respect to characters, in a text where the starting narrative 

boundary occurs. The third column contains the position, with respect to characters, in a 
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text where the ending narrative boundary occurs. The fourth column contains the name 

annotators used for a title of the current narrative level.  

This section will define how the annotation spreadsheets are transformed into a list 

of narrative level annotations. Each element on this list represents whether the respective 

sentence is original narrative level or not (i.e. an embedded or interrupted narrative level).  

 

Narrative ID Span Start Span Stop Notes 

0 0 57285  

1 0 57285 

June / Offred's 

narrative 

2 1861 2509 The aunts and guns 

3 4099 4150 Aunt Lydia said… 

3 5122 5296  

3 16044 16132  

3 17834 18060  

Figure 4.5 Excerpt from the gold-standard annotations.  

 

The goal is to map the boundary locations from column two and three of Figure 4.1 into a 

list of binary classifications for each sentence. A classification of true means there is 

either an embedded or interruptive narrative in the sentence, and false means there is only 

the original narrative present. The following procedure was adopted: for each narrative 

level higher than the original narrative (the level with narrative ID 1), I look at each 

span’s start and stop value. I map the start and stop span numbers into the sentences that 
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the spans occur in, and make all sentences between the start and stop have annotation 

value for “true”, because it contains either an embedded or interruptive narrative level. 

 

 

4.4 Results 

In this section I will discuss different experiments run across different text corpora. That 

narrative based features are useful in extracting the boundaries of narrative levels in long 

texts. Note that the precision, recall, and F1 metrics reported are macro-averaged over the 

number of folds or texts in the current corpus. 

 

 

4.4.1 Short stories by Haruki Murkami 

 

Table 4.1 Experiments on Haruki Murakami’s short stories 
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The best performing models are when the Murakami short stories are used for testing and 

training. The model for extracting embedded or interruptive levels has a 0.66 F1, and it 

only uses a single feature, an integer that represents how many of the top three characters 

appear in the current sentence. The character based features do best, but the story 

classification feature also does well, with a 0.58 F1.  

 

4.4.2 Novels 

 

Table 4.2 Experiments on novel excerpts 

 

The experiments on novel excerpts have better performance for the original level class than 

the embedded or interruptive class. However, the models trained on the short story class 

have better performance when classifying the embedded or interruptive classes.  
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4.4.3  TV show scripts and court case transcripts 

Unfortunately, the features that worked with novels and short stories did not work with the 

TV show scripts or the court cases. When I tried training the models using these features 

on the script corpora, the training never converged, and the model that it produces predicts 

every sentence as embedded or interruptive, or it predicts that every sentence is part of the 

original narrative. I think this is due to the structural elements of scripts, like action, and 

character speech identifiers. Going forward, it might be better to parse out the action and 

structural elements from the dialogue.  

 

 

4.4.4 Cross corpus experiments 

 

Table 4.3 Experiments on the combined corpus 

 

Table 4.3 contains the results for experiments where the models were trained on a 

combined corpus: a corpus with all ten of the Murakami short stories, and the eight excerpts 

from novels, for a total of 18 texts, and 18 folds for cross validation. With respect to the 
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embedded or interruptive narrative level class, the results are better than the novel corpus, 

but not as good as the short story corpus. If I consider both classes, these experiments have 

a better balance of higher scores for the embedded or interruptive category, and the original 

narrative category. 

 

 

4.5 Contributions and discussion 

The main contribution of this dissertation is embedded in this chapter: identifying a set of 

features that can accurately extract narrative levels from raw text. This exercise in feature 

engineering was heavily influenced by my experience running the narrative level 

annotation study, and my time annotating texts for narrative levels (for a personal pilot 

study). Speaking to my annotators about how they made their decision while annotating 

helped me decide which features to experiment with. Additionally, going through the 

process of doing annotations myself, helped me think about how I made decisions as to 

where narrative boundaries occur in text, and think about how narrative levels become 

either embedded or interrupted.  

 Specifically, using narrative characteristics classifiers, like story, POV and 

diegesis, in tandem with character based features, enables accurate extraction of narrative 

boundaries from long form text. Before this work, it was not possible to detect embedded 

stories occurring in narrative text. Now you can use my features, and the models I 

produced, to find where a narrative boundary lies, and the length of the narrative level.  

 This work can be improved. Modifications to my extractor to detect multiple levels 

of embedded and interruptive narrative is a clear next augmentation. Additionally, research 
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must be done on extracting narrative levels from the scripts, since my extractors failed to 

properly learn and classify these narratives. Finally, research into clustering each span of 

embedded or interruptive text into distinct narrative levels should be conducted. Now the 

detector only knows there is a new level; it cannot decide which spans belong to which 

levels, and I think a clustering technique that uses topic and character modeling will be a 

fruitful path for seeding new work.  
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Chapter 5 

Automatic extraction of stories from text8 

 

 

Story detection is the task of determining if a unit of text contains a story. Prior 

approaches achieved a maximum performance of 0.66 F1, and did not generalize well 

across different corpora. Here I present a new state-of-the-art detector that achieves a 

maximum performance of 0.75 F1 (a 14% improvement), with significantly greater 

generalizability than previous work. In particular, the detector achieves performance 

above 0.70 F1 across a variety of combinations of lexically different corpora for training 

and testing, as well as dramatic improvements (up to 4,000%) in performance when 

trained on a small, disfluent data set. The new detector uses two basic types of features–

ones related to events, and ones related to characters–totaling 283 specific features 

overall; previous detectors used tens of thousands of features, and so this detector 

represents a significant simplification along with increased performance. At the end of 

this chapter I will talk about prior work I did on implementing previous story classifiers, 

and evaluating them on common data sets to determining which approach was most 

effective.  

 

                                                
8 This chapter was adapted from two articles I published: First an article in the 
Proceedings of the Conference on Empirical Methods in Natural Language Processing 
(Eisenberg, 2017), and second an article at the Workshop on Computational Models of 
Narrative (Eisenberg, 2016).  
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5.1 Motivation 

Understanding stories is a long-held goal of both artificial intelligence and natural language 

processing. Stories can be used for many interesting natural language processing tasks, and 

much can be learned from them, including concrete facts about specific events, people, and 

things; commonsense knowledge about the world; and cultural knowledge about the 

societies in which I live. Applying NLP directly to the large and growing number of stories 

available electronically, however, has been limited by our inability to efficiently separate 

story from non-story text. For the most part, studies of stories per se has relied on manual 

curation of story data sets (Mostafazadeh, 2016), which is, naturally, time-consuming, 

expensive, and doesn’t scale. These human-driven methods pay no attention to the large 

number of stories generated daily in news, entertainment, and social media. 

The goal of this work is to build and evaluate a high performing story detector that 

is both simple in design and generalizable across lexically different story corpora. Our 

definition of story can be found in §5.1.2, and is based on definitions used in prior work 

on story detection. Previous approaches to story detection have relied on tens of thousands 

of features (Ceran, 2012; Gordon, 2009), and have used complicated pre-processing 

pipelines (Ceran, 2012). Moreover these prior systems, while clearly important advances, 

did not, arguably, include features that captured the “essence” of stories. Furthermore, 

these prior efforts had poor generalizability, i.e. when trained on one corpus, the detectors 

perform poorly when tested on a different corpus. Building on this prior work, I begin to 

address these shortcomings, presenting a new detector that has many orders of magnitude 

fewer features than used previously, significantly improved cross corpus performance, and 

higher F1 on all training and testing combinations. 
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5.1.1 Task 

Our goal is to design a system that can automatically decide whether or not a paragraph of 

text contains a story.  A paragraph contains a story if any portion of it expresses a 

significant part of a story, including the characters and events involved in major plot points. 

Corpora used in prior work included Islamic Extremist texts (Ceran, 2012), and personal 

web blog posts (Gordon, 2009), which were both annotated at this level of granularity. In 

this chapter I test combinations of new features on both of these corpora. Once I determined 

the best-performing feature set, I ran experiments using those features to evaluate its 

generalizability across corpora. 

 

 

5.1.2 What is a story? 

Author E.M. Forster said “A story is a narrative of events arranged in their time sequence” 

(Forster, 2010). A more precise definition, of our own coinage, is that a narrative is a 

discourse presenting a coherent sequence of events which are causally related and 

purposely related, concern specific characters and times, and overall displays a level of 

organization beyond the commonsense coherence of the events themselves. In sum, a story 

is a series of events effected by animate actors. This reflects a general consensus among 

narratologists that there are at least two key elements to stories, namely, the plot (fabula) 

and the characters (dramatis personae) who move the plot forward (Abbott, 2008). While 

a story is more than just a plot carried out by characters–indeed, critical to ‘storyness’ is 

the connective tissue between these elements that can transport an audience to a different 

time and place–here I focus on these two core elements to effect better story detection. 
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5.1.3 Chapter outline 

I begin by discussing prior work on story detection (§5.2). Then I introduce the new 

detector (§5.3), which relies on simple verb (§5.3.1) and character (§5.3.2) features. I tested 

the detector on two corpora (§5.3.3)—one of blog posts and one of Islamist Extremist 

texts—using an SVM model to classify each paragraph as to whether or not it contains a 

story (§5.3.4). I conducted an array of experiments evaluating different combinations and 

variants of our features (§5.4). I detail the use of undersampling for the majority class 

(§5.4.1), as well as the cross validation procedure (§5.4.2). I present both the results of the 

single corpus experiments (§5.4.3) and the cross-corpus and generalizability experiments 

(§5.4.4). Then I will do a review of work I did before I built my verb and character based 

story classifier. This work is on reimplementing the first two story classifiers, and how I 

evaluated their performance (§5.5). Then I conclude with a list of contributions and 

discussion of future directions (§5.6). 

 

 

5.2 Related work 

There have been three major contributions to the study of automatic story detection. In 

2009, Gordon and Swanson developed a bag-of-words-based detector using blog data 

(Gordon, 2009). They annotated a subset of paragraph-sized posts in the Spinn3r Blog 

corpus for the presence of stories, and used this data to train a confidence weighted linear 

classifier using all unigrams, bigrams, and trigrams from the data. Their best F1 was 0.55. 

This was an important first step in story detection, and the annotated corpus of blog stories 

is an invaluable resource. 
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In 2012, Corman et al. developed a semantic triplet-based detector using Islamist 

Extremist texts (Ceran, 2012). They annotated paragraphs of the CSC Islamic Extremist 

corpus for the presence of stories, and used this data to train an SVM with a variety of 

features including the top 20,000 tf-idf tokens, use of stative verbs, and agent-verb-patient 

triplets (“semantic triplets,” discussed in more detail below in §3.1). Their best performing 

detector in that study achieved 0.63 F1. The intent of the semantic triplet features was to 

encode the plot and the characters. These features were intended to capture the action of 

stories, but the specifics of the implementation was problematic: each unique agent-verb 

patient triplet has its own element in the feature vector, and so this detector was sensitive 

primarily to the words that appeared in stories, not generalized actions or events. 

Although Corman’s detector has a higher F1 than Gordon’s, it was not clear which 

one was actually better; they were tested on different corpora. I compared the two detectors 

by reimplementing both, confirmed the correctness of the reimplementations, and running 

experiments where each detector was trained and tested on the corpora (Eisenberg et al., 

2016). After these experiments, I showed that Corman’s detector had better performance 

on the majority of experiments. Some of the results of these experiments are shown in 

Table 5.5. I also slightly improved the performance of Corman’s detector to 0.66 F1. In 

addition I reported results investigating the generalizability of the detectors; these results 

showed that neither the Gordon nor the Corman detectors generalized across corpora. I 

ascribed this problem to the fact that the features of each detector were closely tied to the 

literal words used, and did not attempt to generalize beyond those specific lexical items. 

In terms of domain independence, I surveyed other discourse related tasks to see 

how generalization across domains has been achieved. For example, Braud (2014) 
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achieved domain independence in the identification of implicit relations between discourse 

units by training their system on both natural and synthetic data, weighting the influence 

of the two types (Braud, 2014). Jansen (2014), as another example, demonstrated domain 

independence on the task of non-factoid question answering by using both shallow and 

deep discourse structure, along with lexical features, to train their classifiers (Jansen 2014). 

Thus, domain independence is certainly possible for discourse related tasks, but there does 

not yet seem to be a one-size-fits-all solution. 

 

 

5.3 Developing the detector 

In contrast to focusing on specific lexical items, our implementation focuses on features 

which I believe capture more precisely the essence of stories, namely, features focusing on 

(a) events involving characters, and (b) the characters themselves. Figure 5.1 contains a 

block diagram which represents the pipeline for the process of extracting features from 

paragraphs of raw text. 
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Figure 5.1 Diagram of the story extractor feature extraction pipeline.  

 

 

5.3.1  Verb features 

Verbs are often used to express events. I use this fact to approximate event detection in a 

computationally efficient but still relatively accurate manner. The first part of each feature 

vector for a paragraph comprises 278 dimensions, where each element of this portion of 

the vector represents one of the 278 verb classes in VerbNet (Schuler, 2005). The value of 

each element depends on whether a verb from the associated verb class is used in the 

paragraph. Each element of the vector can have three values: the first value represents when 

a verb from the element’s corresponding verb class is used in the paragraph and also 

involves a character as an argument of the verb. The second value represents when a verb 

from the verb class is used, but there are no characters involved. The third value represents 

the situation where no verbs from the verb class are used in the paragraph. 
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For clarity, here are the steps of the verb feature extraction pipeline: 

 

1.  Split each paragraph into tokens, assign part of speech tags, and split the 

text into sentences, all using Stanford CoreNLP (Manning et al., 2014). 

2.  Parse each sentence with OpenNLP (Apache Foundation, 2017). 

3. Label each predicate with its semantic roles using the SRL from the Story 

Workbench (Finlayson, 2008, 2011). 

4. Disambiguate the Wordnet sense (Fellbaum, 1998) for each open-class 

word using the It Makes Sense WSD system (Zhong, 2010), using the Java 

WordNet Interface (JWI) to load and interact with WordNet (Finlayson, 

2014). 

5. Assign one of 278 VerbNet verb classes to each predicate, based on the 

assigned Wordnet sense, and using the jVerbnet library to interact with 

VerbNet. (Finlayson, 2012). 

6. Determine whether the arguments of each predicate contains characters 

by using the Stanford Named Entity Recognizer (Finkel et al., 2005) and a 

gendered pronoun list. 

 

I considered an argument to involve a character if it contained either (1) a gendered 

pronoun or (2) a named entity of type Person or Organization. I treated organizations as 

characters because they often fulfill that role in stories: for example, in the Extremist 

stories, organizations or groups like the Islamic Emirate, Hamas, or the Jews are agents or 

patients of important plot events. The verb features were encoded as a vector with length 
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278, each entry representing a different VerbNet verb class with three possible values: the 

verb class does not appear in the paragraph; the verb class appears but does not involve 

characters; or the verb class appears and a character is either an agent, patient, or both. 

The verb features represent the types of events that occur in a paragraph, and 

whether or not characters are involved in those events. This is a generalized version of the 

semantic triplets that Corman et al. used for their story detector (Ceran, 2012), where they 

paired verbs with the specific tokens in the agent and patient arguments. The disadvantage 

of Corman’s approach was that it led to phrases with similar meaning being mapped to 

different features: for example, the sentences “Mike played a solo” and “Trey improvised 

a melody” are mapped to different features by the semantic triplet based detector, even 

though the meaning of the sentences are almost the same: a character is performing music. 

On the other hand, in our approach, when I extract verb feature vectors from these 

sentences, both result in the same feature value, because the verbs played and improvised 

belong to the performance VerbNet class, and both verbs have a character in one of their 

arguments. This allow a generalized encoding of the types of action that occurs in a text. 

 

 

5.3.2  Character features 

Our second focus is on character coreference chains. A coreference chain is a data structure 

that represents mentions of an entity in a text. Consider the following text: “Josh went to 

the beach. He got a sunburn.” Here the pronoun “he” is used to refer to the character “Josh”. 

A coreference chain keeps track of all the links between pronouns, and other references, 

with the characters they refer to. 
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 Characters, as discussed previously, are a key element of stories. A character must 

be present to drive the action of the story forward. I hypothesize that stories will contain 

longer coreference chains than non-stories. To encode this as a feature, I calculated the 

normalized length of the five longest coreference chains, and used those numbers as the 

character features. I computed these values as follows: 

 

1. Extract coreference chains from each paragraph using Stanford CoreNLP 

coreference facility (Clark, 2016). 

2. Filter out coreference chains that do not contain a character reference as 

defined in the Verb section above (a named entity of type Person or 

Organization, or a gendered pronoun). 

 

3. Sort the chains within each paragraph with respect to the number of 

references in the chain. 

4. Normalize the chain lengths by dividing the number of referring 

expression in each chain by the number of sentences in the paragraph. 

 

The normalized chain lengths were used to construct a five-element feature vector for use 

by the SVM. I experimented with different numbers of longest chains, anywhere from the 

single longest to the ten longest chains. Testing on a development set of 200 Extremist 

paragraphs revealed using the five longest chains produced the best result. 
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Figure 5.2 Visualization of character feature extraction pipeline 

 

5.3.3  Corpora 

As noted, I used two corpora that were annotated by other researchers for the presence of 

stories at the paragraph level. The CSC Islamic Extremist Corpus comprises 24,009 

paragraphs (Ceran, 2012), of which 3,300 were labeled as containing a story. These texts 

recount Afghani and Jihadi activities in the mid-2000’s in a variety of location around the 

world. This corpus was originally used to train and test Corman’s semantic-tripletbased 

story detector. The web blog texts come from the ICWSM 2009 Spinn3r Dataset (Burton 

et al., 2009). The full data set contains 44 million texts in many languages. Gordon and 

Swanson (2009) annotated a sample of 4,143 English texts from the full data set, 201 of 

which were identified as containing stories. This corpus was originally used to train and 

test Gordon’s bag-of-words based detector. Most of the texts in the blog corpus are no more 

than 250 characters, roughly a paragraph. The distribution of texts can be seen in Table 

5.1. 
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Table 5.1 Distribution of stories in extremist and blog corpora 

 

 

5.3.4  SVM machine learning 

I used the Java implementation of LibSVM (Chang and Lin, 2011) to train an SVM 

classifier with our features. The hyper-parameters for the linear kernel were γ = 0.5, ν = 

0.5, and c = 20. 

 

 

5.4 Experiments and results 

The results of the new experiments are shown in Table 5.3. I report precision, recall, and 

F1 relative to the story and non-story classes. I performed experiments on three feature sets: 

the verb features alone (indicated by Verb in the table), character features alone (indicated 

by Char), and all features together (Verb+Char). I conducted experiments ranging over 

three corpora: the Extremist corpus (Ext), the blog corpus (Web), and the union of the two 

(Comb). These results may be compared with the previously best performing detector, 

namely, Corman’s semantic triplet based detector (Ceran, 2012), as tested by us in prior 

work (Eisenberg, 2016), and shown in Table 5.2. 

 

Corpus Story Non-story
Extremist 3,300 20,709
Blog 201 3,942
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Table 5.2 Results for the Corman semantic triple based detector from Eisenberg 

(2016).  

 

 

Table 5.3 Results of new detectors across all corpora from Eisenberg (2017). 

 

 

 

 

 

Training Testing Prec. Recall F1
Ext Ext 0.77 0.57 0.66
Ext Web 0.23 0.37 0.28
Ext Comb 0.43 0.41 0.32
Web Web 0.66 0.31 0.43
Web Ext 0.59 0.003 0.01
Web Comb 0.59 0.01 0.01
Comb Ext 0.62 0.51 0.43
Comb Web 0.36 0.49 0.3
Comb Comb 0.64 0.47 0.46

Not Story Story
Features Training Testing Prec. Recall F1 Prec. Recall F1
Verb Ext Ext 0.73 0.81 0.77 0.78 0.7 0.74
Verb Web Web 0.69 0.75 0.72 0.73 0.66 0.69
Char Ext Ext 0.3 0.27 0.21 0.52 0.74 0.55
Char Web Web 0.67 0.68 0.67 0.67 0.65 0.65
Verb+Char Ext Ext 0.73 0.81 0.77 0.79 0.7 0.74
Verb+Char Ext Web 0.68 0.8 0.73 0.75 0.63 0.69
Verb+Char Ext Comb 0.7 0.77 0.73 0.75 0.67 0.71
Verb+Char Web Web 0.71 0.76 0.72 0.74 0.68 0.7
Verb+Char Web Ext 0.5 0.82 0.62 0.5 0.18 0.27
Verb+Char Web Comb 0.53 0.79 0.64 0.6 0.4 0.41
Verb+Char Comb Ext 0.74 0.81 0.77 0.79 0.71 0.75
Verb+Char Comb Web 0.68 0.74 0.7 0.72 0.64 0.67
Verb+Char Comb Comb 0.72 0.81 0.76 0.79 0.68 0.73
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5.4.1 Undersampling 

In each of the new experiments, I undersampled the non-story class before training 

(Japkowicz, 2000). Undersampling is a technique used to help supervised machine learning 

classifiers learn more about a class that has a significantly smaller number of examples 

relative to an alternative. In our case, non-story labels outnumbered story labels by a factor 

of 7 overall. Extremist story paragraphs are only 15.9% of the total annotated paragraphs 

in that set, and in the blog corpus stories were only 4.9% of the paragraphs. To prevent the 

detector from being over trained on non-story paragraphs, I thus reduced the size of the 

nonstory training data to that of the story data, by randomly selecting a number of non-

story texts equal to the number of story texts for training and testing. 

 

 

5.4.2 Cross-validation 

I used three versions of cross validation for the new experiments, one for each experimental 

condition: training and testing on a single corpus; training on a single corpus and testing 

on the combined corpus; or training on the combined corpus and testing on a single corpus. 

These procedures are the same as in our previous work (Eisenberg, 2016). I performed 

undersampling before cross validation, so when I am explaining how to divide up the story 

and non-story texts into cross validation folds, this refers to the full set of story texts and 

the set of non-story texts that was randomly selected to equal the number of story texts. 

For all experiments with cross validation, I use ten folds. 
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Train and Test on a Single Corpus: If the training and testing corpus is the same, 

divide up the stories into ten subsets of equal size, and the undersampled non-stories into 

ten subsets of equal size. For each fold of cross-validation a different story set and non-

story set (of the same index) are used as the testing set and the remaining nine are used for 

training. 

Train on Combined, Test on Single: If the training is done on the combined corpus, 

and the test corpus is either the web blog or Extremist corpus, which I will refer to as the 

single test corpus, first divide the stories from the single test corpus into ten equal sized 

sets, and then divide up that corpus’s non-stories into ten equal sets. For each fold of cross 

validation a different story set and non-story set (of the same index) from the single test 

corpus are used as the testing set and the remaining nine are used for training. The texts 

from the other corpus (the corpus that is not the single test corpus), are undersampled and 

added to all ten folds of training. 

Train on Single, Test on Combined: If training is done on a single corpus, and the 

test corpus is the combined corpus, first divide the stories from the single training corpus 

into ten equal sized sets, and the undersampled non-stories from the single training corpus 

into ten equal sized sets. For each fold of cross validation a different story set and non-

story set (of the same index) from the single training corpus are used as the testing set and 

the remaining nine are used for training. The texts from the other corpus (the corpus that is 

not the single training corpus), are undersampled and added to all ten folds of testing. 
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5.4.3 Single corpus experiments 

For every experiment that used only a single corpus, the best feature set included both the 

verb and character features, achieving up to 0.74 F1 when trained and tested on the 

Extremist corpus. This is the new state-of-the-art, about 12.6% greater than the 

performance of Corman’s detector when trained and tested on the same corpus (0.66 F1). 

When the detector uses only verb features it achieves an F1 of 0.74 on the Extremist 

corpus, only 0.002 lower than the detector using all the features. Interestingly, the detector 

achieves 0.55 F1 using only the five character features, which is respectful given such a 

small feature set. To put this in perspective, the Corman detector (Ceran, 2012) uses more 

than 20,000 features, and achieves an F1 of 0.66. Thus I was able to achieve 83% of the 

performance of the Corman detector with 4,000 times fewer features. 

When training and testing on the blog corpus, the detector using all the features 

achieved 0.70 F1, a 74% increase from the Corman detector’s 0.425 F1. This is the best 

performing model on the blog corpus, from any experiment to date. The detector using 

only verb features achieves 0.74 F1, which is only slightly worse than when both sets of 

features are used. When I trained using only the character features, the system achieves 

0.65 F1, which is still 54% higher than when the Corman detector is trained and tested on 

the blog corpus. 

In the single corpus experiments, the detectors that I trained and tested on the 

Extremist paragraphs have higher performance than those trained on the web blogs, except 

for when I use only the five character features. A possible reason for this is the Stanford 

NER may not be recognizing the correct named entities in the Extremist texts, which 

contain many non-Western names, e.g., Mujahidin, Okba ibn Nafi, or Wahid. However, 
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when I include the verb features, the detectors trained on the Extremist texts achieve better 

performance. I believe this is partially due to the greater number of stories in the Extremist 

corpus, and their increased grammatical fluency. The Extremist corpus is actually well 

written compared to the blog corpus, the latter of which contains numerous fragmentary 

and disjointed posts. 

 

 

5.4.4 Cross corpus experiments 

I show the generalizability of our best performing detector (that including both verb and 

character features) by training it on one corpus and testing it on another. When I trained 

the detector on the Extremist texts and tested on the blog texts, it scores a 0.68 F1. This is 

142% improvement over Corman’s detector in the same setup (0.28 F1), and is a higher F1 

than the previous state-of-the-art on any single corpus test. When I trained the detector on 

the Extremist corpus and tested on the combined corpus, it achieved 0.71 F1, which is an 

121% increase from Corman’s detector in the equivalent setup. 

For the detector trained on the blog corpus and tested on the Extremist corpus, the 

detector that uses both verbs and character features achieves an 0.27 F1, which is a 2,600% 

increase over the Corman detector’s 0.01 F1 in this same setup. While 0.27 F1 can by no 

means be called good performance, it is significantly better than the Corman detector’s 

performance on this task, and so demonstrates significantly better generalizability. As seen 

in our experiments, detectors trained on only the blog corpus do not perform as well as 

detectors trained on the Extremist corpus. I suspect that this is partially due to the disfluent 



 97 

nature of the blog corpus, which includes many fragmentary sentences, grammatical errors, 

and slang, all of which are difficult for the NLP pipeline to handle. 

Note that I performed no cross validation in the above experiments where I trained 

the detector on the Extremist corpus and tested on the blog corpus, or vice versa, because 

in these cases the training and testing sets have no intersection. 

The cross corpus experiment with the largest percent increase is for the verb and 

character detector trained on the blog corpus and tested on the combined corpus. The new 

detector’s F1 is 0.41, a 4,000% increase from the Corman detector’s 0.01 F1 on this task. 

Although a 0.41 F1 is also not good, this is a massive improvement over previous 

performance. This is further evidence that our verb and character feature based detector is 

significantly more generalizable than Corman’s approach. 

The remaining five cross corpus experiments involved the combined corpus. In this 

case, our detector out-performed Corman’s detector. Of special note is the detector trained 

on the combined corpus and tested on the Extremist corpus. It achieved 0.75 F1, which is 

0.01 points of F1 higher than our best single corpus detector, which was trained and tested 

on the Extremist corpus. This isn’t a substantial increase in performance, but it suggests 

that information gleaned from the blog corpus does potentially—albeit marginally—help 

classification of the Extremist texts. 
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5.5 Prior work on story classification9 

Before my work there were only two approaches to story classification: one developed by 

Gordon et al. at USC (Gordon, 2009), the other by Corman et al. at ASU (Corman 2012). 

Both the Gordon and Corman classifiers leverage supervised machine learning algorithms 

trained on large annotated datasets, and both use linguistic features to separate story from 

non-story text. Gordon’s classifier uses unigram frequencies to classify stories. This 

classifier was originally tested on the ICWSM 2009 Spinn3r blog dataset, which contains 

personal stories that were posted to blogs in 2009 (Burton 2009). Corman’s classifier, on 

the other hand, focuses on verbs and their patient and agent arguments (semantic triplets). 

It also considers the unigram frequencies and density of various features such as part of 

speech tags, named entities, and stative verbs. Corman’s classifier was originally tested on 

the CSC corpus of Islamic Extremist texts, in which each paragraph was annotated as either 

story, exposition, supplication, religious verse, or other. 

 In the following subsection (§7.1.1) I will take a detailed look at the Gordon and 

Corman story classifiers. In a previous publication (Eisenberg 2016), I reimplemented both 

classifiers, and evaluated their performance on their original test corpus to confirm the 

results of the original studies. The following sections will take an in-depth look at the 

design on the previous classifiers, by show how I reimplemented them.  

Next, I tested the reimplemented classifiers across the other corpora to gain insight 

into which classifier had better performance, and in turn decide which classifier had a better 

                                                
9 This section was adapted from an article I published in the Proceedings of the Seventh 
International Workshop on Computational Models of Narrative (Eisenberg, July 2016).  
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approach to the problem of story classification. In §7.1.2 I will discuss the results of these 

experiments, and how it led to the creation of the story extractor built for the work in 

Chapter 5.   

 

 

5.5.1 Design of previous story classifiers 

5.5.1.1 Reimplemented Gordon story classifier 

The philosophy of Gordon’s classifier is stories are made up of words, and so to find stories 

one should look for story-relevant words. Gordon’s story classifier uses unigram features 

(Gordon 2009) and so makes associations based on what words appear in stories vs. non-

stories (a “bag of words” approach). The features (words) extracted from each text in the 

training set are used to train a confidence weighted linear classifier (Dredze 2008). This is 

like perceptron learning (Ng, 1997; Rosenblatt 1958), but it has augmentations which can 

improve how it learns NLP features. Although the confidence weighted linear classifier 

can be better suited than the perceptron for classifying certain NLP phenomena, I did not 

find that to be true in our story classification experiments. To train the confidence weighted 

linear classifier each word is run through the classifier one time (one epoch); it is uncertain 

how many epochs of training Gordon used, but I found that performance did not improve 

significantly by training this classifier for more epochs. After training, the confidence 

weighted linear classifier has assigned each individual word a weight that represents how 

relevant it is in classifying text as a story. Weights closer to zero imply that the word occurs 

in both stories and non-stories with similar frequency, while weights far from zero imply 

that the relevant word appears correlates with one of the two classes (stories or non-stories). 
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To classify a document, its words are extracted in the same manner as they are in the 

training set. Then the feature counts are capped: all counts above 7 are brought down to 7. 

Finally, the feature values are normalized to values between 0 and 1. 

There are two parts to our reimplementation: the feature extractor and the 

confidence weighted linear classifier. The feature extraction pipeline is built in Java, but 

the classifier is written in the Go programming language, in order to make use of the 

gonline library10, which is a library of online machine learning algorithms written in Go. I 

used the goline library because I could not find a usable version of the confidence weighted 

linear classifier in Java. I modified the gonline library to produce more fine-grained error 

statistics, and to suppress false parser errors. For the feature extractor, I use some of the 

same text preprocessing that Gordon provided11. I use the same regular expressions from 

his Python code to break up clitics, punctuation, and irregular characters. Then I feed the 

filtered data through the Stanford Tokenizer (Manning, 2014) to turn each document into 

a stream of tokens. This stream of tokens is used for the unigram counting. 

 

 

5.5.1.2 Improved Gordon story classifier 

During reimplementation I experimented with replacing the confidence-weighted linear 

classifier with traditional single layered biased perceptron network [13, 16]. This 

“Perceptron” version of the Gordon classifier scored an F1 measure 5 points higher than 

                                                
10 https://github.com/tma15/gonline 
 
11 https://github.com/asgordon/StoryNonstory	
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our implementation of the confidence weighted Gordon classifier. This is interesting 

because the confidence weighted linear classifier has been reported as better at classifying 

data from the NLP domain [5]. In this case, not only was the Perceptron classifier easier to 

develop than the confidence weighted one, it also had better performance. These findings 

are expanded upon in §3.2. In our final implementation of this improved classifier, I trained 

the Perceptron for 10 epochs and used a learning rate of 0.005. I settled on these 

hyperparameters via tuning and experimentation. Additionally, for each epoch, I 

randomized the order that the training vectors are shown to the Perceptron, because 

Perceptrons are known to be quite sensitive to the order that the training examples are 

learned. 

The final difference between the original implementation and our improved 

implementation is that our encoding scheme for the frequencies is slightly different. Our 

augmentation is a smoothing of all the feature values: 0.07 (roughly 1/14) is added to each 

feature value. I did this to guarantee that the weights for each feature will be updated during 

the Perceptron learning, as features with value 0 do not contribute to the learning (in our 

implementation). 

 

 

5.5.1.3 Reimplemented Corman story classifier 

Corman’s semantic triplet based classifier is trained on a wide variety of features “of 

varying semantic complexity” so it requires a robust linguistic pipeline to facilitate feature 

extraction (Ceran, 2012). Some of the features are based on lexical properties: the densities 

of the 30 Penn Tree Bank part of speech tags (Santorini, 1990), stative verbs, and person, 
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location, and organization named entities. The term frequency inverse document frequency 

(tf-idf) (Salton, 1975) measure is calculated for each word in each document of the training 

corpus and, in this implementation, the words with the highest 20,000 tf-idf measures are 

features. The final feature is the semantic triplet. These are triplets of each verb with their 

respective patient and agent arguments. Sometimes this feature is actually a four-tuple 

where the fourth term is a locational preposition. The lexical features and triplets are 

extracted from each document in the training set and used to train a support vector machine 

(SVM) with an RBF function (Keerthi 2003). 

Corman’s 2012 paper gives a high-level description of how these features are extracted 

from each document. Our classifier differs in a few non-trivial ways: 

 

• I do not use the Illinois Semantic Role Labeler (Punyakanok, 2008). I use a 

semantic role labeler built from scratch in our lab, which is included in the Story 

Workbench linguistic annotation tool (Finlayson 2008 & 2011). I used our own tool 

because the Illinois SRL is quite heavyweight: it requires installation of the Illinois 

Curator Serve (Clarke, 2012) and MongoDB12. 

• I do not do coreference resolution to replace the pronouns with their corresponding 

referent entity. 

• I do no alias standardization. It was unclear how this should be carried out, since 

the named entity tagging is run on each token, and there was no explanation for 

how multi-word named entity boundaries were determined. 

                                                
12 https://www.mongodb.com/ 
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• I performed no spell checking on our named entities for the same reason as the alias 

standardization. 

• I only use the Stanford named entity recognizer (Finkel, 2005) and the Illinois 

named entity tagger (Ratinov, 2009). I do not use the Open Calais named entity 

recognizer13 because I wanted the classifier to run without needing to query a 

limited resource on the internet. 

 

I removed three portions of the text preprocessing, used a different SRL, and one fewer 

NER than Corman’s original implementation. Even though I built a less complicated 

version of Corman’s classifier, it performed approximately the same as (or even slightly 

better than) the original. 

To extract semantic triplets, I first extract the parse tree for a sentence. I pass this parse 

tree to the SRL, which extracts all the predicates and their arguments. I take the lemmatized 

predicates and search for a VerbNet (Schuler, 2005) category based on the number of 

arguments in Propbank (Kingsbury 2013); I take an exact match if there is one, but take 

the closest match otherwise. Failing this, I return the lemma of the word from Wordnet. I 

follow the following rules, set forth by Ceran et al. in their paper: 

 

• If our object has multiple verbs, it is complex. I create new triplets for the object 

recursively and assign a pointer to the new triplets as the object for this triplet. 

• If the SRL doesn’t return Arg1, I substitute Arg2 for the object. 

                                                
13 https://en.wikipedia.org/wiki/Calais_(Reuters_product) 
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• If Arg2 is a location preposition, I include it as a fourth element. 

• If Arg2 is a preposition, I use Arg1 as the subject and Arg2 as the object. 

 

Due to some shortcomings in our SRL I may find that some or all of the arguments for a 

given predicate are null; in the event that some of our predicates are null, I simply tag the 

remaining slot (either subject or object) with a “-1” indicating a lack of an argument. If all 

of our arguments are null I attempt to find the closest noun behind the predicate, which I 

assign as the subject, and the closet noun ahead of the predicate, which I assign as the 

object. As above if I result in a null argument from finding the closet nouns I tag those slots 

with “-1”. 

To use the triplets as a feature, I extract all the possible subjects, objects, and 

location prepositions for a given verb or verb category from across the entire corpus. Then 

I assign each verb and verb category a specific index. These indices are determined by a 

simple alphabetical sort: I check every document’s triplets and assign it a “1” at a given 

index if it has that verb or that argument for the verb and a “0” otherwise. These features 

are used to train a SVM that uses a radial bias function (RBF) kernel function and a soft 

margin C of 10,000, which is a relatively standard setting (I am not sure what soft margin 

parameter was used by Corman). This produces a model that can classify whether a text 

contains a story. To test text on the model, the same types of features extracted in training, 

are extracted from the test document. The feature values are used with the model to obtain 

a classification value. 
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5.5.2     Results 

5.5.2.1 Experimental results of the reimplemented story classifiers 

To show that the reimplemented classifiers behave the same way as the originals, they were 

trained and tested on the same data sets as in the original studies. The Gordon confidence 

weighted (CW) linear classifier was trained and tested on the Spinn3r Web blog Corpus. I 

used the same texts that Gordon used in his study. As can be seen in Table 5.4, in terms of 

F1 our Gordon CW reimplementation performs almost 8 points worse than what Gordon 

reported. Our Gordon CW classifier has a precision of 0.475, recall of 0.5, and an F1 of 

0.471. This could be because Gordon used a different version of the CW algorithm than I 

did, but it is unclear why our implementation performs so differently. Although our 

modified Gordon Perceptron is arguably simpler than our Gordon CW, it has a higher F1 

by almost 5 points. The Gordon Perceptron’s F1 is 0.522, which is almost 3 points less than 

the performance Gordon reported. I cannot say that the Gordon CW is a good 

reimplementation of the original Gordon classifier since the F1 measures are significantly 

different. On the other hand, the performance of our Perceptron and Gordon’s original 

classifier are quite similar, which is encouraging. 

Corman et al. trained and tested their classifier on the CSC Islamic Extremist 

Corpus. I used the same texts during this experiment on the reimplementation. As can be 

seen in Table 5.5, our reimplementation of Corman’s classifier performs similarly to the 

original version. The reimplementation scored a precision of 0.773, recall of 0.573, and F1 

of 0.658, which compares favorably with the originally reported results. 

In terms of F1 our performance scored slightly higher than that of the original 

system. This may be due to the differences in the preprocessing pipeline and the triplet 
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extraction, as discussed in §2.3. Nevertheless, I take the similarity of the results as evidence 

that our reimplementation is roughly faithful to the original. 

 

 

Table 5.4 Results for Gordon classifiers on the web blog corpus. 

 

 

Table 5.5 Results for Corman classifiers on the extremist corpus. 

 

 

5.5.2.2 Cross-testing the classifiers 

Because I have both classifiers and both datasets, I performed experiments to compare how 

each classifier performs on the other data, as well as on both datasets simultaneously. I 

trained and then tested both our reimplemented and improved classifiers on all 

combinations of the three corpora. For the cross-tests of the Gordon Classifier I use the 

Gordon Perceptron. As shown in the previous section, the Gordon Perceptron performs 

closer to the original Gordon Classifier than our reimplementation of the Gordon CW. 

Using the Gordon Perceptron allows for a more accurate comparison of the classifier than 

System Training Testing Prec. Recall F1
Gordon Reported Web Web 0.66 0.48 0.55
Gordon CW Web Web 0.48 0.5 0.47
Gordon Perceptron Web Web 0.65 0.46 0.522

System Training Testing Prec. Recall F1
Corman reported Ext Ext 0.73 0.56 0.63
Corman Ext Ext 0.77 0.57 0.66
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our Gordon CW implementation. For each of the cross-tests, the corpora go through 10-

fold cross validation to generate the training and testing sets, as follows: 

 

• If the training and testing corpora are the same, divide up the stories into ten subsets 

of equal size, and the not stories into ten sets of equal size. For each fold of cross 

validation a different story set and the not story set (of the same index) are used as 

the testing set and the remaining 9 are used for training.  

• If the training is done on the combined corpus, and the test corpus is either the web 

blog or extremist corpus, which I will refer to as the single corpus, first divide the 

stories into ten equal sized sets, and then divide up that corpus’ not stories into ten 

equal sets. First divide the stories in the single corpus into ten equal sets, and the 

not stories of the same corpus into ten equal sets. These can be split into the training 

and testing sets the same as in the previous situation. Additionally, the whole other 

corpus, the one that is not the single corpus, is added to the training set.  

• If training is done on a single corpus, and the test corpus is the combined corpus, 

first break up the stories and not stories of the single corpus each into ten equal 

subsets. Assign them to the training and testing set as in the first situation. Then 

add the whole other corpus, the one that is not the single corpus, to the testing set. 

The results can be seen in Table 5.2. Macro-averages for precision, recall and F1 are 

reported for each experiment. I chose to report macro averaging since it was less sensitive 

to outliers and atypical models. Unless stated otherwise, the F1 measures reported in this 

study are relative to the story class. Using story as the label to classify correctly is a good 



 108 

way to measure performance for this task, since the overall goal is to produce a system that 

can accurately identify stories.  

 

 

5.5.3 Discussion  

The Corman classifier has its best performance when tested and trained on the extremist 

corpus, while the Gordon Perceptron does best on the web blog corpus. Both classifiers 

perform best when tested and trained on the corpus that it was tested on in their original 

studies. The Corman classifier scores best across all the experiments: 0.66 F1 for when it 

is trained and tested on the extremist corpus. Yet, the Corman classifier F1 is 10 points 

worse than the Gordon Classifier when tested and trained on the web blog corpus. This 

suggests that the Corman classifier has a harder time learning from the web blog corpus 

than the extremist corpus. 

The Gordon classifier performed best when trained and tested on the web blog 

corpus. The F1 measure for this experiment was 0.522, which is about 3 percentage points 

lower than the best result Gordon reported, and I hypothesize that this is because 

differences in our CW classifier implementations 

When the Corman classifier, with the Extremist model, is tested on the Web blog 

corpus it only has an F1 of 0.283. This poor performance is because the model has not been 

trained to recognize the type of stories in the Web blog corpus. The stories in the Extremist 

corpus are typically 3rd person, second hand accounts, not 1st person personal accounts. 

Even though the Web blog corpus has significant syntactic irregularity, it contains a 

different type of story than that present in the Extremist corpus, so it is still useful for model 
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training. 

None of the cross-tests perform as well as the tests on the original corpus. The only 

cross test that comes close to the original performance is when the Corman classifier is 

trained on the combined corpus and tested on either the extremist or combined corpora, 

respectively their F1 measures are 0.647 and 0.632. This makes sense, because the training 

set mostly contains examples from the extremist corpus, thus the model is more heavily 

influenced by that corpus. The extremist corpus has about five times more texts than the 

web blog corpus, hence the training set will have five times more texts from the extremist 

corpus. In effect, the combined model is quite similar to the extremist model. 

The two weakest of all the cross tests are when the models are trained using the 

Web blog data and tested on the combined corpus. When trained on the Web blog corpus 

and tested on the combined corpus the F1 measure Gordon’s F1 is 0.014, and Corman’s F1 

is 0.007. Another particularly weak experiment was when the Corman classifier is tested 

on the web blog corpus but tested on the extremist corpus. The F1 for this experiment is 

0.007. This suggests that the Web blog data does not generalize well to the Extremist set. 

Although, the Corman classifier has experiments with the highest F1 measures, it also 

produces the weakest models when trained on only the Web blog corpus. 

I can draw a few additional conclusions from these results. The Corman classifier 

has better performance when trained on the extremist corpus while the Gordon classifier 

has better performance with the web blog corpus. This is interesting because from the 

stories, the Extremist corpus mainly contains second hand accounts of events, often with a 

3rd person narrator. On the other hand, the Web blog corpus mainly contains person stories 

and 1st person narrators. So it is possible that the Gordon classifier is better at finding 
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personal stories while the Corman classifier is better at finding second hand accounts of 

events. It naturally follows that the Corman classifier has better performance when trained 

on the combined corpus than Gordon. This is due to the extremist corpus comprising 80% 

of the combined corpus. 

 

 

5.6 Conclusions 

I have introduced a new story detection approach which uses simple verb and character 

features. This new detector outperforms the prior state-of-the-art in all tasks, sometimes by 

orders of magnitude. Further, I showed that our detector generalizes significantly better 

across lexically different corpora. I propose that this increase in performance and 

generalizability is due to the more general nature of our features, especially those related 

to verb classes. This approach has additional advantages, for example, the feature vector is 

fixed in size and does not grow in an unbounded fashion as new texts (with new verbs, 

agents, and patents) are added to the training data. 

In future work, I plan to develop richer character-based features. The current 

approach uses only normalized lengths of the five longest coreference chains, which leaves 

out important information about characters that could be useful to story detection. Indeed, 

our experiments showed that these character features only add a small amount of 

information above and beyond the verb features. However, when used alone, the character 

features still yield reasonable performance, which suggests that more meaningful 

character-based features could lead to story detectors with even better performance. 
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The applications of the story detector are numerous. Most concretely, I can point to 

its usage in the narrative level extractor presented in Chapter 4. Another application is for 

harvesting narrative text for further analysis. 
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Chapter 6 

Automatic identification of narrative diegesis and POV14 

 

 

The style of narrative news affects how it is interpreted and received by readers. Two key 

stylistic characteristics of narrative text are point of view and diegesis: respectively, 

whether the narrative recounts events personally or impersonally, and whether the narrator 

is involved in the events of the story. Although central to the interpretation and reception 

of news, and of narratives more generally, there has been no prior work on automatically 

identifying these two characteristics in text. I develop automatic classifiers for point of 

view and diegesis, and compare the performance of different feature sets for both. I built a 

gold-standard corpus where I double-annotated to substantial agreement (κ > 0.59) 270 

English novels for point of view and diegesis. As might be expected, personal pronouns 

comprise the best features for point of view classification, achieving an average F1 of 0.928. 

For diegesis, the best features were personal pronouns and the occurrences of first person 

pronouns in the argument of verbs, achieving an average F1 of 0.898. I apply the classifier 

to nearly 40,000 news texts across five different corpora comprising multiple genres 

(including newswire, opinion, blog posts, and scientific press releases), and show that the 

point of view and diegesis correlates largely as expected with the nominal genre of the 

texts.  

                                                
14 This chapter was adapted from an article I published in the Proceedings of the Second 
Workshop on Computing News Storylines (Eisenberg, November 2016). 
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I released the training data and the classifier for use by the community. 

Additionally, I submitted a patent for the choice of what features to use for the automatic 

classification of narrative diegesis and POV. This patent was recently approved by the U.S. 

Patent Office (No. 15/804,589). 

A year and a half after the development of the narrative characteristics classifiers, 

I realized that the POV and diegesis classifiers were invaluable tool for the task of narrative 

boundary extraction. In Chapter 4 I show how automatic classification of the POV and 

diegesis of paragraphs of text were useful in determining whether they belonged to 

embedded narratives. In certain experiments, the SVM could distinguish narrative levels 

based on change of POV between paragraphs. A key alteration was made to the POV and 

diegesis detectors from the pipeline discussed in this chapter: for narrative level detection 

do not remove quoted text. This is altered because I am interested in narrative 

characteristics of all texts, not just narrative speech, but also what characters say. Some 

embedded narratives are totally encapsulated by quotes, so I would miss the narrative 

characteristic changes present during these narratives. 

 

 

6.1 Motivation 

Interpreting a text’s veridicality, correctly identifying the implications of its events, and 

properly delimiting the scope of its references are all challenging and important problems 

that are critical to achieving complete automatic understanding of news stories and, indeed, 

text generally. There has been significant progress on some of these problems for certain 

sorts of texts, for example, recognizing implications on short, impersonal, factual text in 
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the long-running Recognizing Textual Entailment challenge (RTE15). On the other hand, 

narrative text (including much news writing) presents additional complications, in that to 

accomplish the tasks above one must take into account the narrator’s point of view (i.e., 

first person or third person), as well as the narrator’s personal involvement in the story (a 

feature that narratologists call diegesis). 

In news stories specifically writers are encouraged to use the third person point of 

view when they wish to emphasize their objectivity regarding the news they are reporting 

(Davison, 1983). In opinion pieces or blog posts, on the other hand, first person is more 

common and implies a more personal (and perhaps more subjective) view (Aufderheide, 

1997). News writers are also often in the position of reporting on events which they 

themselves have not directly observed, and in these cases can use an uninvolved style 

(known as hetereodiegetic narration) to communicate their relative remove from the action. 

When writers observe or participate in events directly, however, or are reporting on their 

own lives (such as in blog posts), they can use an involved narrative style (i.e., 

homodiegetic narration) to emphasize their personal knowledge and subjective, perhaps 

biased, orientation. 

Before I can integrate knowledge of point of view (POV) or diegesis into text 

understanding, I must be able to identify them, but there are no systems which enable 

automatic classification of these features. In this paper I develop reliable classifiers for both 

POV and diegesis, apply the classifiers to texts drawn from five different news genres, 

demonstrate the accuracy of the classifiers on these news texts, and show that the POV and 

                                                
15 https://aclweb.org/aclwiki/Textual_Entailment_Portal 
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diegesis correlates much as expected with the genre. I release the classifiers and the training 

data so the field may build on our work and integrate these features into other text 

processing systems. 

Regarding the point of view of the narrator, narratologist Mieke Bal claimed “The 

different relationships of the narrative ‘I’ to the objects of narration are constant within 

each narrative text. This means that one can immediately, already on the first page, see 

which is the [point of view].” (Bal, 2009, p. 29) This assertion inspired the development of 

the classifiers presented here: I had annotators mark narrative POV and diegesis from the 

first 60 lines of each of 270 English novels, which is a generous simulation of “the first 

page”. This observation allowed us to transform the collection of data for supervised 

machine learning from an unmanageable burden (i.e., having annotators read every novel 

from start to finish) into a tractable task (reading only the first page). I chose novels for 

training, instead of news texts themselves, because of the novels’ greater diversity of 

language and style. 

Once I developed reliable classifiers trained and tested with this annotated data, I 

applied the classifiers to 39,653 news-related texts across five news genres, including: the 

Reuter’s corpus containing standard newswire reporting; a corpus of scientific press 

releases scraped from EurekAlerts; the CSC Islamist Extremist corpus containing 

ideological story telling, propaganda, and wartime press releases; a selection of opinion 

and editorial articles scraped from LexisNexis, the Spinn3r web blog corpus, and Reuters 

newswire. I checked a sample of the results, confirming that the classifiers performed 

highly accurately over these genres. The classifiers allowed us to quickly assess the POV 
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and diegesis of the texts and show how expectations of objectivity or involvement differ 

across genres. 

The chapter proceeds as follows. In §6.2 I define point of view and diegesis, and 

discuss their different attributes. In §6.3 I describe the annotation of the training and testing 

corpus, and then in §6.4 describe the development of the classifiers. In §6.5 I detail the 

results of applying the classifiers to the news texts. In §6 I outline related work, and in §6.7 

I discuss how shortcomings of the work and how it might be improved. I summarize the 

contributions in §6.8. In short, this chapter asks the question: can point of view and diegesis 

be automatically classified? The experimental results in this chapter show that it can be 

done. 

 

 

6.2 Definitions 

6.2.1 Point of view 

The point of view (POV) of a narrative is whether the narrator describes events in a 

personal or impersonal manner. There are, in theory, three possible points of view, 

corresponding to grammatical person: first, second, and third person. First person point of 

view involves a narrator referring to themself, and implies a direct, personal observation 

of events. In a third person narrative, by contrast, the narrator is outside the story’s course 

of action, looking in. The narrator tells the reader what happens to the characters of the 

story without ever referring to the narrator’s own thoughts or feelings. In theory second 

person POV is also possible, although exceedingly rare. In a second person narrative, the 

narrator tells the reader what he or she is feeling or doing, giving the impression that the 
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narrator is speaking specifically to the reader themselves and perhaps even controlling their 

actions. This is a relatively rare point of view (in our training corpus of English novels it 

occurred only once), and because of this I exclude it from consideration. Knowing the point 

of view (first or third person) is important for understanding the implied veridicality as 

well as the scope of references within the text. Consider the following example: 

 

(1) Donald made everyone feel bad. He is a jerk. 

 

With regard to reference, if this is part of a first person narrative, the narrator is included 

in the scope of the pronoun everyone, implying that the narrator himself has been made to 

feel bad. In this case I might discount the objectivity of the second sentence if I know that 

the narrator himself feels bad on account of Donald. A third person narrator, by contrast, 

is excluded from the reference set, one can make no inference about his internal state and, 

thus, it does not affect our judgment of the implications of the accuracy or objectivity of 

later statements. With regard to veridicality, if the narration is third person, statements of 

fact can be taken at face value with a higher default assumption of truthfulness. A first 

person narrator, in contrast, is experiencing the events not from an external, objective point 

of view but from a personal point of view, and so assessment of the truth or accuracy of 

their statements is subject to the same questions as a second-hand report. 
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6.2.2 Diegesis 

Diegesis is whether the narrator is involved (homodiegetic) or not involved (heterodiegetic) 

in the story. In a homodiegetic narrative, the narrator is not just the narrator but a character 

as well, performing actions that drive the plot forward. In a heterodiegetic narrative, the 

narrator is observing the action but not influencing its course. As reflected in Table 1, third 

person narrators are almost exclusively heterodiegetic, but first person narrators can be 

either. Like point of view, diegesis provides information to the reader on how to discount 

statements of fact, and so to judge the veridicality of the text. 

 

 

6.3 Corpus 

To train and test our classifiers I chose a corpus of diverse texts and had it annotated for 

point of view and diegesis. I used the Corpus of English Novels (De Smet, 2008), which 

contains 292 English novels published between 1881 and 1922, and was assembled to 

represent approximately a generation of writers from turn-of-the-century English literature. 

Novels were included in the corpus if they were available freely from Project Gutenberg 

(Hart, 2018) when the corpus was assembled in 2007. There are twenty-five authors 

represented in the corpus, including, for example, Arthur Conan Doyle, Edith Wharton, 

and Robert Louis Stevenson. Genres represented span a wide range including drama, 

fantasy, adventure, historical fiction, and romance. To simulate “the first page” of each 

novel, I manually trimmed each text file so that they started with the beginning of the first 

chapter. This was done by hand since automating this process was not a trivial task. Then, 

I automatically trimmed each file down to the first 60 lines, as defined by line breaks in the 
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original files (which reflect the Gutenberg project’s typesetting). These shortened texts 

were used by our annotators, and were the data on which the classifiers were trained and 

tested. I wrote an annotation guide for point of view and diegesis, and trained two 

undergraduate students to perform the annotations. The first 20 books from the corpus were 

used to train the annotators, and the remaining 272 texts were annotated by both annotators. 

After annotation was complete I realized that two of the files erroneously contained text 

from the preface instead of the first chapter, so I removed them from our study. Minus the 

training and removed texts, I produced a gold-standard corpus of 270 novels annotated for 

point of view and diegesis. 

 

 

6.3.1 Inter-annotator agreement 

I evaluated the inter-annotator agreement using Cohen’s kappa coefficient (κ). For point of 

view κ was 0.635, which is considered substantial (Landis and Koch, 1977). The κ for 

diegesis is 0.592, almost substantial. Out of 270 markings, there were 36 and 33 conflicts 

between the annotators for POV and diegesis respectively. The first author resolved the 

conflicts in the POV and diegesis annotations by reading the text and determined the 

correct characteristic according to the annotation guide. I release this gold-standard corpus, 

including the annotation guide, for use by the community.16 

 

                                                
16 I have archived the code, annotated data, and annotation guide in the CSAIL Work 
Products section of the CSAIL Digital Archive, stored in the MIT DSpace online 
repository at https://dspace.mit.edu/handle/1721.1/29808. 
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6.3.2 Interaction of POV with diegesis 

Table 1 shows the distribution of the texts in the corpus across the various categories. Of 

the 270 texts in the corpus, 74 had first person narrators, only 1 had second person, and 

195 were third person. For diegesis, 55 were homodiegetic and 215 were heterodiegetic. 

There was only one second person narrator; this type of narrator is atypical in narrative 

texts in general, and I excluded this text from training and testing. 

 

 

Table 6.1 Distribution of POV and diegesis 

 

As I expected, there are no third person homdiegetic texts in the training corpus. Although 

in principle this is possible, it is narratively awkward, requires the narrator to be involved 

in the action of the story (homodiegetic), but report the events from a dispassionate, third-

person point of view, never referring to themselves directly. Our data imply that this type 

of narrator is, at the very least, rare in turn of the century English literature. More generally, 

from our own incidental experience of narrative, I would expect this be quite rare across 

narrative in general. 

 

 

 

Person
First Second Third

Homodiegetic 54 (20%) 1 (0.4%) -
Heterodiegetic 20 (7.4%) - 195 (72.2%)



 121 

6.4 Developing the classifiers 

I implemented the preprocessing (§6.4.1), SVM training, cross-validation testing (§6.4.2), 

and feature extraction for the classifiers (§6.4.3 and §6.4.4) in Java (Gosling, 2014). 

 

 

6.4.1 Preprocessing 

The preprocessing was the same for both classifiers. The full text of the first 60 lines of the 

first chapter was loaded into a string, then all text within quotes was deleted using a regular 

expression. For both POV and diegesis it is important to focus on language that is uttered 

by the narrator, whereas quoted text represents words uttered by the characters of the 

narrative. The benefits of removing the quoted text is shown in Tables 3 and 4. After I 

removed the quoted text, I used the Stanford CoreNLP suite to tokenize and detect sentence 

boundaries (Manning et al., 2014). Finally, I removed all punctuation17. This produced an 

array of tokenized sentences, ready for feature extraction. 

  

 

6.4.2 Experimental procedure 

To determine the best sets of features for classification, I conducted two experiments, one 

each for POV and diegesis. In each case, texts were preprocessed as described above (§4.1), 

and various features were extracted as described below. Then I partitioned the corpus 

training and testing sets using ten-fold cross-validation. Precisely, this was done as follows: 

                                                
17 Specifically, the six characters [. ? ! , ; :]. 
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for POV, the texts annotated as first person were divided into ten sets containing nearly 

equal numbers of texts, and I did the same for the third person texts. Then the first set of 

both the first person and third person texts were designated as the test sets and the classifier 

was trained on the remaining nine sets from each class. This was repeated with each set 

(second, third, fourth, etc. …), designating each set in order as the test set, with the 

remaining sets used for training. There are more third person narrators in the corpus; hence, 

each training fold has more examples of third person narrators than first person narrators. 

I performed cross-validation for diegesis in exactly the same manner.  

I then trained an SVM classifier on the training fold using specific features as 

described below (Chang, 2011). To evaluate performance of the classifiers I report macro-

averaged precision, recall, and F1 measure. This is done by averaging, without any 

weighting, the precision, recall, and F1 from each fold. I also report the average of F1 for 

overall performance (weighted by number of texts). 

 

 

6.4.3 Determining the best POV feature set 

The best set of features for point of view should be straightforward: narrators either refers 

to themselves (first person) or they don’t (third person). Naturally, a first-person narrator 

will refer to themself with first person pronouns, and so the presence of first person 

pronouns in non-quoted text should be a clear indicator of a first person point of view. 

Importantly, as soon as a narrator uses a first person pronoun they become a first person 

narrator, regardless of how long they were impersonally narrating. A list of the sets of first, 

second, and third person pronouns that I used as features can be found in Table 6.2. 
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I investigated eight different features sets for POV classification. The classifier with 

the best performance uses counts of the first, second, and third person pronouns as the 

feature set. Six of the remaining experiments use different subsets of the pronouns: I test 

the performance of on each individual set of pronoun as well as each combination of two 

pronouns sets. Features sets that did not consider first person pronouns were unable to 

classify first person narrations, but, importantly, first person pronouns alone were not the 

best for classifying first person narratives. The classifier that considers all three types of 

pronouns has an F1 almost six percentage points higher than the classifier that only 

considers first person pronouns. 

 

 

 

Table 6.2 Pronouns used for classification 

 

 

Figure 6.1 POV extraction pipeline 

 

1st I, me, my, mine, myself, we, us, our, ours
2nd you, your, yours
3rd he, him, his, she, her, hers, they, them, theirs

Raw 
text

Remove
quoted

text
"...."

Extract
and count
pronouns

Narrative
speech I, me, my..

she, her...
they, them...

you...

POV feature vectors

SVM model
trained on 

annotations

POV classification

1st or 3rd
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Previously I discussed that it is important to remove quoted text before the features are 

extracted. To test the importance, I ran an experiment where I did not remove quoted text 

in preprocessing, and then used all pronouns as in the best performing classifier. This 

negatively impacted F1 for first person narrators by 13 percentage points and the F1 for 

third person narrators by about 3 percentage points. This shows that it is important to 

remove quoted text before extracting features for POV classification. The only feature sets 

that did worse than the feature set with quoted text removed were those feature sets that 

did not include first person pronouns. 

 

 

6.4.4 Determining the best diegesis feature set 

Pronouns are also a prominent feature of diegesis, but it is not as simple as counting which 

pronouns are used: diegesis captures the relationship of the narrator to the story. On the 

one hand, if the narrator never refers to themself (i.e., a third person narrator), then it is 

extremely unlikely that they are participating in the story they are telling, and so they are, 

by default, a heterodiegetic narrator. On the other hand, first person narrators may be either 

homo- or heterodiegetic. In this case one cannot merely count the number and type of 

pronouns that occur, but must pay attention to when first person pronouns, which represent 

the narrator, are used as arguments of verbs that represent events in the story. Event 

detection is a difficult task (Verhagen, 2007), so I focus on finding when first person 

pronouns are used as arguments of any verb. While in reality not all verbs represent events, 

a large fraction do, and as the performance of the classifier shows this feature correlates 

well with the category. To find the arguments of verbs, I use our in-house semantic role 
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labeler (SRL) that is integrated into the Story Workbench (Finlayson, 2008; Finlayson, 

2011). 

 

Figure 6.2 Diegesis classification pipeline 

 

 

Figure 6.3 1st person action extraction pipeline 

 

I tested four different sets of features for diegesis classification. The simplest counts how 

many times each first person pronoun appears in an argument of a verb. Although this 

classifier is somewhat successful, it is somewhat weak identifying homodiegetic narrators. 

The best performing diegesis classifier uses occurrences of the first, second, and 

third person pronouns in addition to the features from the simple diegesis classifier as 

features. I hypothesized that I could further improve the performance of this classifier by 

including a feature that counted the occurrences of second and third person pronouns as 

arguments of verbs that also have a first person pronoun as an argument (this is listed as 

the “cooccurrence” feature in Table 4). Our reasoning was that this feature would encode 
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where the narrator and another character were connected by the same event, which is 

indicative of homodiegesis. Contrary to our expectations, however, this feature 

undermined homodiegetic classification: this classifier could not train an SVM model that 

could recognize homodiegetic narrators. This was the weakest of all of the diegesis 

classifiers. 

Above I claimed that removal of quoted text is useful for diegesis classification. To 

show this, I took the feature set from our best diegesis classifier (with first person pronouns 

as arguments to a verb, and the occurrences of all pronouns), and took out the quoted text 

removal from the pipeline. This caused the F1 measure to drop over 13 percentage points 

for homodiegetic and approximately 2 percentage points for heterodiegetic. These drops in 

performance indicate that the classifier performs better when quoted text is removed. 

 

 

Table 6.3 Results for POV classification experiments 
 

 

Table 6.4 Results for diegesis classification experiments 

First person Third person Avg

Feature Set
Quoted text 

removed Precision Recall F1 Precision Recall F1 F1
Majority class baseline 0 0 0 0.72 1 0.84 0.61
3rd person pronouns only X 0 0 0 0.73 9.99 0.84 0.61
2nd person pronouns only X 0 0 0 0.75 0.98 0.85 0.62
2nd and 3rd person pronouns 0 0 0 0.74 0.98 0.84 0.61
All pronouns X 0.91 0.67 0.74 0.89 0.96 0.92 0.874
1st person pronouns X 0.97 0.7 0.79 0.9 0.99 0.94 0.9
1st and 3rd person pronouns X 0.96 0.73 0.81 0.91 0.98 0.95 0.91
1st and 2nd person pronouns X 0.94 0.76 0.81 0.92 0.97 0.94 0.91
All pronouns X 0.94 0.81 0.86 0.94 0.97 0.95 0.93

Homodiegetic Heterodiegetic Avg

Feature Set All pronouns
Quoted text 

removed Precision Recall F1 Precision Recall F1 F1
Majority class baseline 0 0 0 0.8 1 0.89 0.706
1st person pronoun as verb arg. X 0.81 0.5 0.59 0.89 0.96 0.92 0.85
1st person as arg. + co-occurrence X X 0.85 0.48 0.59 0.89 0.98 0.93 0.86
1st person pronoun as verb arg. X 0.91 0.58 0.68 0.91 0.98 0.94 0.89
1st person pronoun as verb arg. X X 0.93 0.62 0.72 0.91 0.98 0.95 0.9
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6.5 Application of the classifiers to the news 

To reveal the relationship of POV and diegesis to news story genres, I applied both 

classifiers a diverse set of news corpora. The classifiers for these experiments were trained 

on all 269 first and third person texts from the CEN,18 using the best performing sets of 

features. I applied the classifiers to texts drawn from five corpora: the Reuters-21578 

newswire corpus,19 a corpus of scientific press releases scraped from EurekAlerts, a 

selection of opinion and editorial articles scraped from LexisNexis, the Spinn3r web blog 

corpus (Burton, 2009), and the CSC Islamist Extremist corpus containing ideological story 

telling, propaganda, and wartime press releases (Ceran, 2012).  

The stories from the Spinn3r web blog corpus were found by Gordon and Swanson 

(2009) and the CSC Islamist extremist stories were found by Ceran (2012). These five 

corpora are used for testing the POV and diegesis classifiers; these corpora are not used for 

training the classifiers. For each experiment in this section, the best set of POV and diegesis 

features from S4.3 and §4.4, were used to train a classifier, these classifiers were trained 

on the first page of each novel from the CEN. For each corpora, after running the classifiers 

I randomly sampled texts and checked their classification to produce an estimate of the true 

accuracy of the classifiers. Sample sizes were determined by calculating the number of 

samples required to achieve a 99% confidence for a point estimate of proportion, using the 

proportion estimated by the classifier (Devore, 2011). In all cases the ratio of first person 

                                                
18 The number of texts was 269 because one text in the corpus of 270 texts was second 
person. 
 
19 http://www.daviddlewis.com/resources/testcollections/ reuters21578/ 
 



 128 

to third person texts (and homo- to hetero-diegetic texts) was chosen to be equal to the ratio 

in the classification. 

 

Table 6.5 Distribution of POV and diegesis across news and story corpora 

 

 

6.5.1 Reuters-21578 newswire 

This corpus contains 19,043 texts, and all but one were marked by the classifiers as third 

person and heterodiegetic. I expected this, as journalists typically use the third person POV 

and heterodiegetic narration to communicate objectivity. 

The erroneous classification of one text as first person was the result of a type of 

language I did not anticipate. The article in question uses direct speech to quote a letter 

written by Paul Volcker, Federal Reserve Board chair, to President Ronald Reagan. The 

majority of the article is the text of the letter, where Volcker repeatedly refers to himself, 

using the pronoun “I”. The POV classifier interpreted this document at 1st person because 

the text of Volcker’s letter was not removed in the quotation removal phase. The letter is 

quoted using direct speech, which our simple, regular-expression-based quotation 

detection system cannot recognize. 

 To estimate the true accuracy of the POV classifier over the Reuters corpus I 

randomly sampled and checked the POV of 200 texts (including the single first person 

Corpus # Texts 1st Person 3rd Person Homo. Hetero.
Approx. 
accuracy

Reuters-21578 19,043 1 (<1%) 19,042 (~100%) 1 (<1%) 19,042 (~100%) 99% / 99%
EurekAlert 12,135 31 (<1%) 12,104 (~100%) 5 (<1%) 12,129 (~100%) 97% / 94%
CSC Extremist 3,300 42 (1%) 3,258 (99%) 15 (<1%) 3,285 (~100%) 94% / 92%
Lexis Nexis 4,974 1,290 (26%) 3,684 (74%) 818 (16%) 4,156 (84%) 70% / 40%
Spinn3r 201 133 (66%) 68 (34%) 67 (33%) 134 (67%) 42% / 21%
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text). All of the classifications were correct except the single first person text, resulting in 

an accuracy estimate of 99.5% over the newswire text for the POV classifier (1.3% margin 

of error at 99% confidence). 

To estimate the true accuracy of the diegesis classifier over this corpus I randomly 

sampled and checked the diegesis of 200 texts (including the single homodiegetic text). Of 

the 199 heterodiegetic texts, all were correct, while the single homodiegetic text was 

incorrect, resulting in an accuracy estimate of 99% for the diegesis classifier over the 

newswire text (1.81% margin of error at 99% confidence). 

 

 

6.5.2 EurekAlert press releases 

This corpus contains 12,135 texts scraped from EurekAlert,20 dated between June 1st and 

December 31st, 2009. The distribution of this corpus is similar to the Reuters corpus, and 

over 99% of the texts were classified as third person and heterodiegetic narrations. Press 

offices write press releases to entice journalists to write newswire articles, and so it makes 

sense that they will attempt to mimic the desired narrative distance in the press release, 

seeking to present themselves as unbiased narrators. 

To estimate the true accuracy of the POV classifier over the press releases I 

randomly sampled and checked the diegesis of 120 texts, including two first person and 

118 third person. Of the two first person texts, one was correct, and of the 118 third person 

                                                
20 http://www.eurekalert.org 



 130 

texts, 115 were correct, resulting in an accuracy estimate for the POV classifier of 97% 

over the press release text (4.03% margin of error at 99% confidence).  

To estimate the true accuracy of the diegesis classifier over this corpus I randomly 

sampled and checked the diegesis of 120 texts, including 2 homodiegetic and 118 

heterodiegetic. Of the two homodiegetic texts, neither were correct, and of the 118 

heterodiegetic texts, 111 were correct, resulting in an accuracy estimate for the diegesis 

classifier of 94% over the press release text (5.6% margin of error at 99% confidence). 

 

 

6.5.3 LexisNexis opinions and editorials 

This corpus comprises 4,974 texts labeled opinion or editorial scraped from the LexisNexis 

website,21 dated between January 2012 and August 2016. Texts were included if they 

contained more than 100 words and appeared in one of a set of major world publications 

including, for example, the New York Times, the Washington Post, and the Wall Street 

Journal. About one-quarter of these texts are first person, and more than half of the first 

person narrators were homodiegetic. I expected this increased abundance of first person 

and homodiegetic texts, as the purpose of these types of articles is often to express 

individual opinions or the writer’s personal experience of events. 

 To estimate the true accuracy of the POV classifier over the LexisNexis articles, I 

randomly sampled and checked the POV of 200 texts, 50 from those classified as first 

person and 150 from those classified as third person. Of the 50 texts classified as first 

                                                
21 http://www.lexisnexis.com/hottopics/lnacademic/ 
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person all were confirmed correct, while of the 150 texts classified as third person only 90 

were confirmed correct. This suggests that our classifier is not properly identifying all of 

the first person narrators in the LexisNexis corpus, and results in a accuracy estimate of 

70% for the POV classifier over the LexisNexis texts (2.7% margin of error at 99% 

confidence). 

 To estimate the true accuracy of the diegesis classifier over this corpus I randomly 

sampled and checked the diegesis of 200 texts, including 24 homodiegetic and 126 

heterodiegetic texts. Of the 24 homodiegetic texts, all were correct, and of the 126 

heterodiegetic texts, 51 were correct, allowing us to estimate that the diegesis classifier has 

an accuracy of 40% over the press release text (11% margin of error at 99% confidence). 

 

 

6.5.4 Spinn3r blogs 

This corpus comprises 201 stories extracted by Gordon and Swanson (2009) from the 

Spinn3r 2009 Web Blog corpus (Burton, 2009). These texts come from web blogs, where 

people often tell personal stories from their perspective, or use the blog as a public journal 

of their daily life. In contrast with newswire text, there is no expectation that a blog will 

report the truth in an unbiased manner. The distribution of the POV on this corpus reflects 

this tendency, with 66% of the texts being first person. 

 The diegesis distribution for the web blog stories was not unexpected: slightly more 

than half of the blog stories with first person narrators are homodiegetic. These are the 

most personal stories of the web blog story corpus, in which the narrator is involved in the 

story’s action. 
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 To estimate the true accuracy of the POV classifier on the Spinn3r corpus, I 

randomly sampled 20 texts, 13 from those classified as first person and 7 classified as third 

person. Of the 13 first person texts 9 were confirmed correct, while of the 7 third person 

texts only 3 were confirmed correct. Overall, our classifier has trouble classifying the web 

blog texts. This might be due to syntactic irregularities of blog posts, which vary in their 

degree of adherence to proper English grammar. With respect to third person narrators I 

estimate that the POV classifier has an accuracy of 42% over the web blog text (34% 

margin of error at 99% confidence). 

 To estimate the true accuracy of the diegesis classifier over this corpus I randomly 

sampled and checked the diegesis of 20 texts, including six homodiegetic and 14 

heterodiegetic texts. Of the six homodiegetic texts, all were correct, and of the 14 

heterodiegetic texts, three were correct. With respect to the heterodiegetic narrators I 

estimate that the diegesis classifier has an accuracy of 21% over the press release text (27% 

margin of error at 99% confidence). 

 

 

6.5.5 Islamic extremist texts 

The CSC Islamist Extremist corpus contained 3,300 story texts, as identified by Corman 

(2012). These texts were originally posted on Islamist Extremist websites or forums. Our 

POV classifier found that 99.7% of the extremist stories were written in the third person. 

For the most part, the extremist stories were second hand accounts of events, often to share 

news about the outcome of battles or recount the deeds of Jihadists. 
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To estimate the true accuracy of the POV classifier on this corpus, I randomly 

sampled 150 texts, 2 from those classified as first person, and 148 classified as third person. 

Both texts classified as first person were verified to be first person narrators. Of the 148 

texts classified as third person, 139 were verified correct. With respect to third person 

narrators, I can estimate the classifier has an accuracy of 93.9% over the extremist texts 

(4.92% margin of error at 99% confidence). 

To estimate the true accuracy of the diegesis classifier over this corpus I randomly 

sampled and checked the diegesis of 150 texts, including 2 homodiegetic and 148 

heterodiegetic texts. Of the 2 homodiegetic texts, 1 was correct, and of the 148 

heterodiegetic texts, 137. With respect to heterodiegtic narrators, I can estimate the 

classifier has an accuracy of 92% over the press release text (5.6% margin of error at 99% 

confidence). 

 

 

6.6 Related work 

As far as I know this is the first study on the automatic classification of point of view and 

diegesis at the level of the text. In his book “Computational Modeling of Narrative”, Mani 

framed the problem of computational classification of narrative characteristics, including 

point of view and diegesis, defining with reference to narratology (Mani, 2012). He gives 

a framework for representing features and characteristics of narrative in his markup 

language NarrativeML. However, he does not actually implement a classifier for these 

characteristics. 
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Wiebe proposed an algorithm for classifying psychological point of view in third 

person fictional narratives (Wiebe, 1994). The algorithm is a complex rule-based classifier 

which tracks broadening and narrowing of POV, and reasons whether each sentence is 

objective or subjective. She discusses a study where people used the algorithm to classify 

sentences, but the accuracy of people in that task was not given. Thus, while intriguing, it 

is not clear how well this algorithm performs since its correctness was not verified with a 

human annotated corpus. 

In more recent work, Sagae employed a data-driven approach for classifying spans 

of objective and subjective narrations (Sagae, 2013). Their experiments were performed 

on a corpus of 40 web blog posts from the Spinn3r 2009 web blog corpus (Burton, 2009). 

Their features included lexical, part of speech, and word/part of speech tag n-grams. The 

granularity of their classifier is fine grained, in that the system tags spans of text within a 

document, as opposed to our classifiers which classify the whole document. 

 

 

6.7 Discussion 

Our best classifier for POV uses the occurrence of all pronouns as features, with an F1 of 

0.857 for first person POV, and 0.954 for third person POV. The weighted average over 

the two classes is a 0.928 F1. Table 3 contains the results for the POV classification 

experiments. This is a great start for the automatic classification of POV, and comes close 

to human performance. It is reasonable and expected from narratological discussion that 

the best set of features is the number of first, second, and third person pronouns in non-

quoted text. 
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The best diegesis classifier in our study, the one that counts the first-person 

pronouns as verb arguments as well as the occurrence of each pronoun, has an F1 of 0.721 

for homodiegetic, and 0.947 for heterodiegetic. The weighted average over the two classes 

is a 0.898 F1. Table 6.4 contains the results for the diegesis classification experiments. This 

is a good first start for diegesis classification, but the performance for homodiegetic 

narrators falls short. The features for this classifier are also reasonable: first person 

pronouns in verb arguments shows that the narrator is either causing action to happen or 

being affected by actions, and so should naturally correlate with homodiegesis. The 

inclusion of all pronouns as a feature for diegesis also makes sense, as point of view and 

diegesis are closely correlated. As noted previously, third person narrators cannot refer to 

themselves, so they cannot be related to the story. 

 The best performing POV and diegesis classifiers performed significantly than their 

respective baseline classifiers. In Table 6.3, the majority class baseline classifier has 0.607 

F1, while the best POV classifier has 0.928 F1. Table 6.4 shows that the majority baseline 

classifier for diegesis has 0.706 F1, while the best diegesis classifier has 0.898 F1. 

 Diegesis classification might be improved by restricting pronoun argument 

detection only to those verbs that actually indicate events in the story. This focuses the 

classifier on places where the narrator is involved in driving the story forward, which is 

more closely aligned with the definition of diegesis. To do this, I would need to incorporate 

an automatic event detector (Verhagen et al., 2007, e.g.). On the other hand, event detection 

currently is not especially accurate, and incorporating such a feature may very well depress 

our classification performance. 
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 Another approach of interest would be to adapt our classifiers to detect how a 

narrative characteristic changes over the course of a text. Our study focused on short spans 

of traditional, formal, edited novels where the point of view and diegesis remained 

constant. In longer texts it is possible that these characteristics could change, for example, 

in a stream of text comprised of multiple narratives, or in a text which explicitly is trying 

to defy convention (e.g., in highly literary texts such as James Joyce’s Ulysses). 

 Finally, our classifier assumed that the classified texts were all approximately the 

same length (i.e., the first page, or approximately 60 lines). A modification that would be 

important to explore is using densities or ratios for the occurrences of the pronouns, instead 

of raw counts, for classifying texts that are less than 60 lines long. 

 

 

6.8 Contributions 

In this paper, I described and made significant progress against the problem of automatic 

classification of narrative point of view and diegesis. I demonstrated a high performing 

classifier for point of view with 0.928 F1, and a good classifier for diegesis with 0.898 F1. 

To evaluate our classifiers I created a doubly annotated corpus with gold-standard 

annotations for point of view and diegesis– based on the first 60 lines–of 270 English 

novels. I applied these classifiers to almost 40,000 news story texts drawn from five 

different corpora, and show that the classifiers remain highly accurate and that the 

proportions of POV and diegesis they identify correlates in an expected way with the genre 

of the news texts. I provide the annotation guide, annotated corpus, and the software as 

resources for the community. 
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 Important to rehash, the POV and diegesis classifiers were very useful in the task 

of narrative boundary extraction. This is a first real world task that can now be solved by 

computers, using the insights gained via the training of the models in these experiments.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 138 

Chapter 7 

Related work 

 

 

My research is informed and enhanced by the research of others. My work would not be 

possible if it wasn’t for prior efforts from other researchers. In this chapter I will discuss 

work that is similar to mine. First, in §7.1, I will discuss previous approaches to 

computational understanding of narrative structure. Second, I will show how my programs, 

specifically my NLP pipelines, use other researchers’ programs as black boxes. In §7.2 I 

will discuss other programs that I used in my pipelines. Some of the most frequently used 

programs were Stanford CoreNLP for preprocessing (Manning, 2014) and coreference 

resolution (Clark, 2016), It Makes Sense’s word sense disambiguation (Zhong, 2010), and 

the semantic role labeler from Story Workbench (Finlayson, 2008 & 2011). 

 Additionally, in §6.55 I already presented prior work on the task of story 

classification. Here I explained the Gordon (2009) and Corman (2012) story classifiers, 

and how the results of their work influenced me to build my story detector §6.3. 

  

 

7.1  Computational models of narrative 

7.1.1 Learning Proppian functions 

My advisor, Mark Finlayson, worked on extracting high-level narrative structure from 

stories, specifically Russian folktales (Finlayson, 2016). Mark built programs that can 

automatically extract Proppian functions from Russian folktales. A Proppian function is 
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“an act of a character, defined from the point of view of its significance for the course of 

the action” (Propp, 1968, p.21). Some common functions are, an initial act of villainy, 

struggle/victory, and reward for success. This work is the “...first demonstration of a 

computational system learning a real theory of narrative” (Finlayson, 2016). 

For this work, Mark ran a semantic annotation study, for “semantic roles, 

coreference, temporal structure, event sentiment analysis, and dramatis personae” on 15 

Russian folktales. These annotations were used to automatically extract Proppian functions 

from folktales. This work helped inspire my research. His work is on extracting the internal 

structure of stories, specifically trying to group stories with similar events together, while 

my work is on trying to understand how a story is told (where does the story begin, is there 

narrative text, how does the narrator tell the story). My work can be used to filter raw text 

for narrative text, and then Mark’s programs can be used to understand the fine-grained 

semantics of the story. 

 

 

7.1.2 Narrative event chains, narrative cloze, and story cloze 

An interesting, and enjoyed, task for NLP researchers is “narrative cloze”. For this problem 

computers are usually challenged to the following: Given a paragraph of narrative text, 

randomly remove a sentence. Can the computer automatically predict the verb and its 

arguments for the missing sentence? In 2008, Chambers and Jurafsky created this task to 

be “…a comparative measure to evaluate narrative knowledge” (Chambers, 2008). It’s an 

artificial task, since it is hard to say whether humans can consistently solve it, but NLP 

researchers often participate in shared tasks where the goal is to solve this problem. Also 
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in 2008, Chambers defined narrative event chains as a “…partially ordered set of events 

that share a common actor (Chambers 2008).” 

 In 2016 Mostafazadeh introduced the Story Cloze task (Mostafazadeh, 2016). It is 

similar to the narrative cloze task, but with a bit more common sense: given a four-sentence 

story, can the computer automatically guess what the final sentence of the story is? This is 

a more natural task than narrative cloze; people try to guess the last event all the time; think 

about people trying to predict what happens at the end of a TV show or movie. To obtain 

data for this task, Mostafazadeh paid workers from Amazon Mechanical Turk22 to create a 

corpus of 50,000 five sentence stories. These stories, and about 48,000 other five sentence 

stories can be downloaded from the “Story Cloze Test and ROC Stories Corpora” 

website23. The goals of this collected data were to 1) “enable learning of narrative structure 

across a range of events as opposed to a single domain or genre” and 2) “to train rich 

coherent story-telling models” (Mostafazadeh, 2016). 

 In 2017, Mostafazadeh used his corpus of five sentence stories for a story cloze 

shared task (Mostafazadeh, 2017). In this task, the two best submissions had accuracy 

between 0.74 and 0.76. Both systems used logistic regression models. The best models use 

features that model the language of concluding sentences, and does not use information 

from the previous sentences. The second-best system has a more natural set of features: 

coherence of events throughout the proposed story, “emotional trajectory”, and “plot 

                                                
22 https://www.mturk.com/ 
 
23 http://cs.rochester.edu/nlp/rocstories/	
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consistency”. These systems did better than a neural network based baseline, with an 

accuracy of 0.60. 

 

 

7.1.3 Event extraction 

Understanding events, is essential for understanding stories. Plot cannot be extracted 

without knowing what events are portrayed in a text. Therefore, accurate extraction of 

events is important for computational modeling of narrative. Event extraction is hard 

because not every verb represents an event. Some verbs are used to tell the narratee details, 

not everything is plot. A notable work in event extraction was carried out by Chambers 

(2014). He has open sourced a program called CAEVO, which can automatically extract 

events, and construct a graph that explicitly orders every pair of extracted events (“dense 

event graphs”). The system has a 0.51 F1, for the task of determining two events’ temporal 

relationship (i.e. before, after, includes, is included, simultaneous, vague), which is a “14% 

relative increase over the top two systems in TempEval3”. 

 

 

7.1.4 Temporal relationship of events 

Some work has been done on determining the temporal relationship between two events in 

a story: does one event precede the other event, or are they simultaneous? A recent work, 

by Yao (2018), improved the state of the art on several tasks in temporal relationship 

classification. To train their classifier, Yao needed a large corpus of narrative text. Yao 

obtained a narrative corpus by using a variation of my story detector (Eisenberg, 2017). 
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They use a maximum entropy classifier, with a rule based filtering phase. Their classifier 

requires that every paragraph must have a “protagonist” to be classified as a narrative 

paragraph. To enforce this rule, they run a test on the longest coreference chain, they 

normalize its length by the number of sentences in the paragraph. Finally, the paragraph 

can only move onto the next phase—a maximum entropy classifier—if the normalized 

length of the longest coreference-chain is greater than or equal to 0.4. The maximum 

entropy phase uses features based on occurrence of characters, plot events, part of speech 

tags, words that “…denote relativity (e.g., motion, time, space) and words referring to 

psychological processes (e.g., emotion and cognitive)”. This is an adaptation of my 

character-based feature discussed in §5.3.2. 

They used their story extractor to filter three corpora: Novels from the BookCorpus 

(Zhu, 2017), news articles from the English Gigaword, 5th edition (Graff, 2003), and blog 

posts in the Blog Authorship Corpus (Schler, 2006). Their classifier was used to find 

237,000 paragraphs of text from these corpora. Then these paragraphs of text were used to 

train a classifier in extracting temporal relationships between events.  

 

 

7.2     NLP tools 

A huge resource to the implementation of my programs, was my ability to use open source 

tools. A Ph.D. worth of research could have been spent developing each one of the tools 

that I use in my NLP pipelines. I treat these tools as black boxes, and assume they are 

accurate tools. In fact, each of these tools are complicated, and their careful development 

has enabled the success of my classifiers and extractors. In this section I will briefly cover 
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the tools that I used, and how they allowed me to accurately teach computers to understand 

narrative structure.  

 

 

7.2.1 Stanford CoreNLP 

The Stanford CoreNLP Java library was used in every one of my NLP pipelines (Manning 

2014). Stanford CoreNLP is a Java library which provides functionality that is necessary 

for almost any NLP pipeline:  

• Tokenization - breaking streams of text into lists of words 

• Named entity recognition - finding which spans of text represent people, 

organizations, and time-phrases 

• Coreference resolution chain extraction - making lists of references to each referent 

in a text 

•  Part-of-speech tagging - determining which of the 36 Penn Treebank POS (Marcus, 

1993).  

 

 

7.2.2 Story Workbench semantic role labeler  

While working on his Ph.D., my advisor, Mark Finlayson wrote a semantic role labeler 

(SRL), and integrated it into a larger tool, the Story Workbench (Finlayson, 2008 & 2011). 

SRL is a tool, given a parse of a sentence, that can identify the arguments of each predicate. 

This tool was useful for determining who is participating in the actions that are talked about 

in a text. Remember, events can be expressed in language with verbs. The agent and patient 
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argument can tell us who (or what) is causing the event, and who the event is being acted 

upon. When the arguments of verbs contain characters, or pronouns which represent 

characters, this is a signal that a span of text contains narrative content. When the 

arguments of a verb contain first person pronouns, this is often a signal of a homodiegetic 

narrator.  

 There are other SRLs (Zhou, 2015) that have better performance than the Story 

Workbench SRL, but in 2015 and 2016, when I was implementing the Corman story 

classifier, and my diegesis detector, the time investment for getting other SRL systems up 

and running was too great a hurdle to jump while maintaining the deadlines I needed to 

meet for my Ph.D. research to progress.  

  

 

7.2.3 It Makes Sense word sense disambiguation 

Word sense disambiguation (WSD) is the process of determining the meaning of each word 

in a text. The letters that spell out a word can have different meanings depending on the 

surrounding context. For example, consider the two sentences: 

 

(1) Duck is my favorite bird to eat. 

(2) The ball was coming towards me, so I had to duck.  

 

The word duck appears in both sentences, but they don’t mean the same thing. In sentence 

(1) the sense that refers to the type of bird that swims in water is used, but in sentence (2) 
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duck refers to the action of lowering your head to avoid being hit. WSD programs give 

computers the ability to take raw text and determine the word sense for each word.  

 For my story detector, I used the It Makes Sense (IMS) WSD (Zhong, 2010) Java 

Library.  IMS is one of the first open source WSD tools for Java, and it was state of the art 

when it was first released. It was trained and evaluated on SensEval and SemEval data 

labeled data, and it uses linear SVM classifiers.  

 

 

7.2.4 VerbNet, the Java VerbNet Interface, and event extraction 

VerbNet is a lexicon for verbs (Schuler, 2005). This lexicon includes a hierarchically 

organized set of verb classes, which groups semantically similar classes of verbs together 

(like verbs relating to making music are all grouped together in one class). In my pipelines, 

I interact with VerbNet using the Java VerbNet Interface (Finlayson, 2012), a JavaLibrary 

which allows for API access to the verb lexicon. Specifically, I use JWI and VerbNet in 

my Story Classifier (Chapter 5) for extracting verb vectors from raw text. First I use It 

Makes Sense WSD (Zhong, 2010) to get the sense tag for each verb, and then I use JWI to 

access VerbNet for the class that the verb belongs to.  

Computational understanding of verbs is important because verbs in text can 

represent the occurrence of events and action. Sometimes events are represented by spans 

of text longer than just a single verb. Sometimes events are represented by nouns. Event 

extraction is a tough problem in NLP, however there are some automatic event extraction 

programs, most notably CAEVO (Cascading Event Ordering architecture) (Chambers, 

2014), which extracts events from raw text and arranges them in a time series. Although 
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this system has state of the art performance, I was unable to get it working. It would have 

been useful to use CAEVO since I would be able to analyze all the events in a text, and not 

just the verbs. In my current system, I only analyze the verbs, which is limiting, since not 

all verbs represent events, and sometimes there are events talked about without using verbs. 

Eventually, it would be beneficial for my programs, that automatically understand narrative 

structure, to get an event extractor working.  
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Chapter 8 

Conclusion 

 

 

In conclusion, my work has taught computers to extract narrative structure from text. 

Specifically, my work has enabled computers to automatically extract narrative POV and 

diegesis, decide which paragraphs of text have story content, and extract narrative levels 

from long texts. Extraction of POV, diegesis, and narrative levels are all abilities that 

computers did not have until my work. These key features have enabled computers to have 

a better awarenesses and understanding of stories and narrative that are second nature to 

humans. I am not claiming that I have taught computers everything they need to know 

about understanding narrative, but my work has created certain structural elements of 

narrative (POV, diegesis, and narrative levels) that computers can now classify because of 

my research. In the rest of this chapter, I will cover some next steps that expand upon the 

research in my dissertation (§8.1). Then, I will discuss how my work can be applied to the 

domain of automatic stock trading (§8.2). 

 

 

8.1 Future work 

8.1.1 Narrative level extractor 

I have two recommended improvements for the narrative level extractor. First, the narrative 

level extractor only extracts the first level of embedding or interruption. It cannot yet 

decipher if there are multiple levels of embedding. It can only detect if there is a shift from 
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the original narrative to a new narrative. The narrative level extractor can be modified in 

the following way to account for multiple levels of embedding or interruption: Once the 

detector finds a new narrative, it records which sentences belong to the new level. Then 

run the detector again on text where each sentence from the new narrative are appended to 

each other. This recursive process should be repeated for each new narrative level that is 

found by the detector. I hypothesize that the main character features will be most useful for 

finding these doubly embedded narratives, because the set of characters, especially the 

protagonist, tends to change across narrative levels.  

The second enhancement would be teaching the computer to cluster the sentences 

from embedded or interruptive narrative levels, into distinct narratives. Currently the 

extractor is only aware that there are new narrative levels. The extractor cannot decide 

which spans belong to which narrative level. Ideally, the computer should know how many 

narrative levels are in a text, and which sentences belong to which level. I surmise that this 

can be accomplished, automatically, by using clustering algorithms and topic modeling. 

Additionally, analysis of which characters are mentioned in which spans should be helpful 

for making this decision, since each narrative level tends to have different sets of 

characters.  

 

 

8.1.2 Story detector  

Currently the story extractor only works accurately for texts that are one paragraph long. 

Sometimes, it is important to know whether a sentence in a paragraph contains any story 

content. A whole story will usually not appear in a single sentence, but a single sentence 
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could have rich character information, and details about an event as it is unfolding. 

Adapting the story extractor to run on sentences, will allow people to get classifications for 

each sentence, which is useful for tasks where knowing info about single sentences is 

necessary.  

 For my narrative level extractor (Chapter 4), I use the story extractor (Chapter 5) to 

produce story classifications for each paragraph. Then I propagated these classifications 

down to each sentence in the paragraph. It would have been more accurate to classify each 

sentence, instead of assuming the storiness of the sentence is the same as its paragraph. 

 It would be useful to obtain more annotated data for the task of story detection. The 

two data sets that are currently available are highly unbalanced. Less than 20% of the 

annotated data contains positive examples of stories. Also, it is unnatural to annotate 

paragraphs for story content. Stories can begin or end in the middle of paragraphs, which 

is like narrative levels. Also, stories can be interrupted at any point in time. It’s worth 

rethinking the paradigm of annotating texts with paragraph granularity for a binary story 

annotation, and consider annotating longer passages of text, for spans that contain story 

content.  

 

 

8.1.3 POV and diegesis extractor  

Similar to my ideas about improving the story detector, the POV and diegesis detectors 

need to be augmented to classify short spans of text, specifically for single sentences. 

Currently, the POV and diegesis detectors can only classify full paragraphs. This restriction 

affected the performance of the narrative level extractor, because the classification for each 
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paragraph was propagated down to the sentence level. This procedure does not always 

produce correct annotations at the sentence level. 

 Additionally, it would be useful to run a new annotation study for POV and 

diegesis, where annotators are working on long passages of text, and they annotate the POV 

and diegesis for each span. This is important because either of these characteristics can 

change at any point in a text, not just in between paragraphs.  

 There is also room for improvement in the actual classes the POV extractor can 

classify. Currently, it classifies everything as first or third person POV. In narratology, 

second person POV is a real type of POV. I didn’t include second person POV in my 

experiments because my annotators didn’t find enough second person narrators to allow 

for training and testing a SVM model. It would be interesting to run a new annotation study 

that is specifically aimed at finding more second person narrators, to enable the SVM to 

learn how to classify this type of POV. Further, considering POV more closely, as personal 

pronouns have become more fluid and specific to identify gender-nonconforming people, 

it would be important to consider the evolution and use of LGBTQ+ pronouns in 

storytelling as research in this field develops.  

  

 

8.2 Automatic stock trading 

One of the most financially appealing applications of my work is using narrative structure 

extraction along with other NLP methods to guide automatic stock trading. Hedge funds 

already use NLP to analyze social media, and newswire to decide when to buy or sell 

stocks. They use primitive methods, like sentiment analysis and named entity recognition 
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to make decisions. The following is a simplistic example: An article is published on a 

financial news website. A computer at a hedge fund will process an article, and use it to 

make decisions about what to do with its portfolio of investments. If the article mentions 

“Amazon” and its CEO “Jeff Bezos” enough times, the computer will know that the article 

is about the company Amazon. If the article has a positive sentiment, then the computer 

will buy or hold onto Amazon’s stock, because something “positive” is happening at 

Amazon. If the article has a negative sentiment, then the computer will sell stock, or short 

the stock, because it is receiving “negative” press. These are the types of programs that are 

currently being used to analyze newswire and social media to make decisions about how 

to play the stock market. While these programs enable companies to make quick decisions 

automatically, the decisions are not necessarily intelligent or based in understanding the 

context of the data being used.  

Deciding how to trade stocks is more complicated than knowing how positive or 

negative an article is. It is more important to understand what events are being mentioned, 

and predicting the impact these events will have: Can the events in this article be matched 

with events in the past to help make an educated decision? Also, it is important to know 

what parts of an article (or social media post) are referring to past, current or future events. 

Sometimes articles will give a history of a company, which accompanies reporting of a 

current event. Sometimes articles are written in a personal manner, and give more opinions 

than facts. 

 The processes for narrative structure extraction that I developed can be used to gain 

a more nuanced computational understanding of stories than sentiment analysis. First, POV 

and diegesis extraction can be used to decide whether a text is written in a personal or 
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biased manner, or if it is more objective reporting. First person narratives tend to give their 

opinions, and not just report facts, while third person narrators are telling a story without 

making it personal, so they tend to be more objective. Knowledge of the POV and diegesis 

of a text can be used to determine how objective it is.  

 Second, narrative level extraction can be used to parse through different narratives 

in an article. Usually, the beginning of the article will contain a telling of the events that 

just happened, and interspersed throughout the remainder of the text will be narratives 

about the past. It is important to process the many narrative levels separately. Typically, 

the most important story to process is the one about the most recent events. The stories 

about the past should communicate information that the computer already knows. My 

narrative level extractor can be used to let the computer know that there are distinct 

narratives being told. Then, other programs can be used to determine which narrative is 

about the most recent events, and then these spans of text should be used to make decisions 

about what to do in the stock market.  

 Finally, once narrative levels have been extracted from an article, more fine-grained 

information can be extracted. Namely, what events are mentioned in each narrative. Once 

the computer knows what events come from the most current narrative, it can try to make 

decisions based on the sequence of events. Techniques like Analogical Story Merging 

(Finlayson, 2016) can be used to cluster the events in the narrative with sequences of events 

from the past. Once the computer can classify the current event sequence with sequences 

from the past, it will be easier to predict how the current events will affect stock 

performance, and enable better decision making.  
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